Валентин Юльевич Арьков "Частотный анализ числовых и текстовых данных. Учебное пособие"

Данная работа посвящена применению современных методов и технологий больших данных в курсе бизнес-аналитике и статистики. Анализ частоты появления различных значений – один из способов первоначальной обработки данных. Чаще всего его относят к описательной статистике или аналитике. Подсчет частот имеет отношение распределению. Поэтому для успешного восприятия материала желательно освежить в памяти основы теории вероятностей и математической статистики.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785005988416

child_care Возрастное ограничение : 12

update Дата обновления : 13.04.2023

Частотный анализ числовых и текстовых данных. Учебное пособие
Валентин Юльевич Арьков

Данная работа посвящена применению современных методов и технологий больших данных в курсе бизнес-аналитике и статистики. Анализ частоты появления различных значений – один из способов первоначальной обработки данных. Чаще всего его относят к описательной статистике или аналитике. Подсчет частот имеет отношение распределению. Поэтому для успешного восприятия материала желательно освежить в памяти основы теории вероятностей и математической статистики.

Частотный анализ числовых и текстовых данных

Учебное пособие




Валентин Юльевич Арьков

© Валентин Юльевич Арьков, 2023

ISBN 978-5-0059-8841-6

Создано в интеллектуальной издательской системе Ridero

Предисловие

Данная работа посвящена применению современных методов и технологий больших данных в курсе бизнес-аналитике и статистики. Анализ частоты появления различных значений – один из способов первоначальной обработки данных. Чаще всего его относят к описательной статистике (Descriptive Statistics). В последнее время также говорят об описательной аналитике (Descriptive Analytics). Подсчет частот имеет отношение распределению. Поэтому его восприятия материала желательно обладать пониманием основ теории вероятностей и математической статистики.

В данной работе мы рассмотрим примеры и приемы частотного анализа числовых и текстовых данных средствами Python.

К этому материалу следует относиться именно как к примерам. Потому что есть много способов выполнить одно и то же действие. Разные способы и разные алгоритмы могут дать в конечном счете один и тот же результат.

Данное пособие можно скачать совершенно бесплатно через сайт издательства Ридеро. Причем в разных форматах.

Введение

Частотный анализ – это изучение характеристик распределения случайной величины. Напомним, что распределение описывает вероятность (частоту) появления тех или иных значений статистического признака. Анализ формы и параметров распределения обычно относят к описательной статистике – Descriptive Statistics.

Язык Python во многом построен как объектно-ориентированный, поэтому мы имеем дело с объектами. А у объектов есть методы, которые соответствуют понятию функция и команда в традиционном программировании. Для упрощения мы будем говорить «функция», не углубляясь в технические подробности.

Мы будем выполнять работу в облачной среде Google Colab, но программу можно также использовать (с небольшими доработками) и в других средах. Основное преимущество Colab – это возможность приступить к работе, не занимаясь установкой программного обеспечения. Требования к компьютеру минимальные: наличие браузера и подключения к интернету.

1. Начало работы

1.1. Результаты и защита

Здесь мы обсудим первые шаги и основные моменты, касающиеся выполнения работы. В данной работе мы проводим обучение в режиме мастер-класса, когда студенты повторяют действия специалиста – «мастера своего дела». В данном выражении слово «класс» означает «занятия на выбранную тему». Это выражение позаимствовано из английского. Фактически, это английское выражение master class, записанное русскими буквами, а вовсе не перевод.

Программа на Python уже готова, её можно просмотреть, скачать и запустить. Мы обсуждаем её по частям, которые называются ячейками. Студентам нужно с этой программой ознакомиться и «поиграться», меняя некоторые параметры. В конечном счёте нужно достичь некоторого понимания и способности использовать и модифицировать эту готовую программу.

Поэтому в тексте даются пояснения и несложные задания. Во время защиты студент демонстрирует понимание материала и способность осмысленно использовать готовые команды и конструкции языка.

За счет такого подхода можно быстро войти в курс дела и сделать первые шаги в аналитике данных на Питоне.

Задание. Просмотрите в Википедии статью Мастер-класс.

1.2. Работа и отчет

Будем выполнять работу в облачном блокноте Jupyter Notebook в среде Google Colab.

https://colab.research.google.com/ (https://colab.research.google.com/)

Для работы понадобится подключение к интернет и учетная запись Google. Наш блокнот одновременно является инструментом для анализа данных и отчетом, в котором мы «документируем» все наши действия – шаг за шагом.

Для работы на локальном компьютере можно использовать бесплатную среду Anaconda с аналогичными возможностями.

https://www.anaconda.com/ (https://www.anaconda.com/)

Еще один вариант – это запуск на локальном компьютере контейнера с Anaconda и работа с ним через браузер.

1.3. Создание блокнота

При открытии страницы Colab выбираем создание нового блокнота: New Notebook. Задаём ему информативное название.

Блокнот состоит из ячеек, которые могут содержать программный код – Code — или текст – Text. Для создания очередной ячейки нажимаем соответствующую кнопку, см. рис.

Рис. Создание ячейки

Отчёт по лабораторной работе традиционно начинается с титульного листа. В нашем примере это будет текстовая ячейка, содержащая основные данные о выполненной работе и исполнителе (студенте).

В начале каждого раздела создаём текстовую ячейку с соответствующим названием. Двойным щелчком левой кнопки мыши переходим к редактированию ячейки. Для заголовков первого верхнего уровня используем символ решетки. После ввода текста для «запуска» ячейки на выполнение нажимаем комбинацию клавиш [Shift + Enter]. При этом автоматически создаётся новая кодовая ячейка.

Чтобы раскрыть структуру документа, нажимаем кнопку содержание Table of contents, см рис.

Рис. Заголовок раздела

Для оформления текста можно использовать разметку Markdown и HTML. При этом в правой половине ячейки открывается предварительный просмотр отформатированного текста, см. рис.

Рис. Титульный лист

2. Анализ числовых данных

2.1. Генерируем данные

В этой части работы мы познакомимся с возможностями анализа числовых данных.

Создадим новый раздел и озаглавим его: «Генерируем числовые данные». Обратим внимание, что мы можем перемещаться между разделами документа с помощью оглавления. Мы также можем сворачивать и разворачивать разделы, нажимая кнопку слева от заголовка раздела, см. рис.

Рис. Управление разделами

Сгенерируем выборку, состоящую из случайных чисел с заданным распределением.

В начале импортируем загружаем библиотеку numpy – Numerical Python Extensions. Библиотека позволяет работать с числовыми массивами и содержит много полезных математических функций. Здесь же мы назначаем короткий псевдоним np для удобства вызова функций, см. рис.

Рис. Загружаем библиотеку

По ходу выполнения работы вставляем комментарии. Это полезно и для себя, и для читателя. Комментарии начинаются с символа решетки #. Они сразу позволяют документировать ход работы. Так что у нас одновременно появляются и сама программа, и документация – описание к ней.

Все книги на сайте предоставены для ознакомления и защищены авторским правом