Евгений Юрьевич Миронов "Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа"

Нобелевскую премию по экономике просто так не дают. В 1990 году Гарри Марковиц, Уильям Шарп и Мертон Миллер получили нобелевскую премию за разработку основ теории портфельных инвестиций. В России ежегодно увеличивается количество частных инвесторов. Но большинство из них не слышали про портфельную теорию. А если слышали, то думают, что это не для них, а для каких-то крупных компаний с большим капиталом. В книге сделана попытка познакомить читателя с основами портфельной теорией, с одной стороны, с минимальным использованием математики, а, с другой стороны, без сильного упрощения математики, чтобы у читателя не появилось ощущение, что будто бы эта теория является бесполезной игрушкой. В книге рассматриваются 9 портфельных стратегий, в том числе и относительно новая стратегия портфеля иерархического паритета риска, появившаяся в 21 веке. Показана проблема использования на практике весовых коэффициентов теоретического портфеля и рассматривается онлайновый инструмент решения этой проблемы.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 16

update Дата обновления : 25.04.2024

Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа
Евгений Юрьевич Миронов

Нобелевскую премию по экономике просто так не дают. В 1990 году Гарри Марковиц, Уильям Шарп и Мертон Миллер получили нобелевскую премию за разработку основ теории портфельных инвестиций. В России ежегодно увеличивается количество частных инвесторов. Но большинство из них не слышали про портфельную теорию. А если слышали, то думают, что это не для них, а для каких-то крупных компаний с большим капиталом. В книге сделана попытка познакомить читателя с основами портфельной теорией, с одной стороны, с минимальным использованием математики, а, с другой стороны, без сильного упрощения математики, чтобы у читателя не появилось ощущение, что будто бы эта теория является бесполезной игрушкой. В книге рассматриваются 9 портфельных стратегий, в том числе и относительно новая стратегия портфеля иерархического паритета риска, появившаяся в 21 веке. Показана проблема использования на практике весовых коэффициентов теоретического портфеля и рассматривается онлайновый инструмент решения этой проблемы.

Евгений Миронов

Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа




Введение

Портфельная теория Марковица и модель Шарпа являются фундаментальными концепциями в области инвестиций и управления инвестиционным портфелем. Эти теории позволяют инвесторам оптимизировать свои портфели, стремясь к максимизации доходности при определенном уровне риска. Или, наоборот, оптимизировать портфели так, чтобы при определенном уровне доходности сделать минимальный риск. Портфельная теория Марковица предлагает способы диверсификации активов для достижения индивидуального оптимального баланса между риском и доходностью.

Модель Шарпа предлагает метрику оценки эффективности портфеля, учитывая его риск. Эта модель помогает инвесторам оценить, насколько хорошо портфель компенсирует риск, и позволяет сравнивать различные портфели по их эффективности. Понимание модели Шарпа позволяет инвесторам принимать обоснованные решения о структуре своих портфелей.

Изучение портфельной теории Марковица и модели Шарпа не только помогает инвесторам принимать обоснованные решения, но и способствует пониманию основных принципов диверсификации и управления риском. Эти концепции играют ключевую роль в формировании успешной стратегии инвестирования на фондовой бирже и позволяют минимизировать потенциальные убытки при максимизации возможной доходности.

В первой части книги рассматриваются основы теории Марковица, даются определения доходности и риска, и показывается нелинейный характер риска портфеля, когда активы портфеля не коррелируют друг с другом. Очень подробно всё показывается на примере самого простого портфеля, который состоит всего из двух рисковых активов. Показано, как результаты для двух активов обобщаются на портфель с 3 активами и N активами.

Во второй части дается обзор классических портфелей, их сильные и слабые стороны, стратегия их диверсификации. Основы модели Шарпа рассматриваются при рассмотрении темы комбинированных портфелей, которые состоят из рисковых и безрисковых активов.

Третья часть книги посвящена проблеме формирования такого реального инвестиционного портфеля, долевые коэффициенты активов которого максимально приближаются к долевым коэффициентам теоретического портфеля. Решение такой проблемы очень актуально для инвесторов с небольшим капиталом, когда на практике невозможно в точности повторить долевые коэффициенты, вычисленные в теории.

В четвертой части книги дается краткий обзор онлайнового калькулятора Дивайдер, который производит все необходимые математические вычисления для формирования и анализа инвестиционного портфеля из рисковых активов Московской фондовой биржи.

В приложении дается базовый математический аппарат. Математика теории Марковица выходит за рамки школьного курса математики. Автор постарался вести изложение материала так, чтобы использовать как можно меньше математики. Например, автор нигде не мучает читателя выводом формул. Главной целью книги является формирование у читателя правильной интуиции по теории Марковица и модели Шарпа.

Книга, в первую очередь, предназначена для биржевых инвесторов, которые инвестируют с горизонтом от 5–10 лет и более. Поэтому в книге не описывается более общая теория, которая, например, рассматривает короткие позиции на продажу и использование заемного капитала в виде кредитного плеча. То есть в книге не рассматривается тема активной биржевой торговли и всё, что связано с ней.

Уведомление о рисках

Инвестиции связаны с различными рыночными, экономическими, политическими, и другими рисками. Инвестиции не всегда приносят доход. Поэтому надо полностью осознавать, что инвестирование в финансовые активы требует обширных знаний и значительного опыта. А также инвестору необходимо понимание природы и сложности финансовых инструментов, способности определять объем инвестирования и оценивать связанные с этим риски.

Читатель должен понимать, что инвестированием занимаются только на свои личные свободные средства, которые не обременены кредитами и обязательными расходами на содержание самого себя и своей семьи.

Как определить, есть ли у вас личные свободные средства? У вас есть личные свободные средства, если у вас есть такие деньги, которые вы можете, например, отдать на благотворительность или на подарок малознакомому человеку (или, как экстремальный вариант, сжечь их на костре или утопить в болоте), и от этого не пострадает ваш текущий уровень жизни и текущий уровень жизни вашей семьи. Если текущий уровень жизни от этого снизится, значит, это у вас совсем не свободные деньги.

И ни в коем случае нельзя пытаться с помощью инвестирования заработать деньги для того, чтобы расплатиться с банковскими кредитами. Если у вас есть банковские кредиты, то самым лучшим инвестированием будет ускоренное погашение этих кредитов.

Снятие ответственности

Автор данной книги не несет никакой ответственности за неправильное понимание материала данной книги и неправильное применение этого материала на практике. Поэтому автор не принимает никаких претензий от читателей по поводу того, что они не смогли получить доход в таком размере, на который они рассчитывали, планировали, надеялись, хотели, мечтали, грезили, фантазировали или видели во сне. Также не принимаются любые претензии, связанные с тем, что читатели, вообще, не получили никакого дохода, или даже остались в убытках.

Данная книга не является индивидуальным инвестиционным предложением.

Вся информация в данной книге предоставляется с образовательной и ознакомительной целями.

Автор не может знать, на сколько правильно читатель понимает материал данной книги и как он использует эти знания на практике. Это точно также, как то, что автор никак не распоряжается жизнью и личностью читателя. Автор не распоряжается вашими деловыми качествами, этическими нормами поведения, направлениями деятельности, и всем тем, что может повлиять на вероятность получения вами доходов. Поэтому, читая данную книгу дальше, вы даете согласие на то, что все риски по неполучению доходов при использовании материала данной книги вы берете на себя.

1. Основы теории Марковица

1.1. Описание проблемы

1.1.1. Опасность для инвестора

Инвесторы хотят купить какие-нибудь биржевые активы, которые приносят им доходы в течение срока владения и/или приносят доход при продаже этих активов в конце срока владения.

Цены биржевых активов меняются не монотонно. Это явление называется волатильностью. Волатильность приводит к тому, что некоторые активы у инвестора во время всего или части срока владения активом показывают отрицательную доходность.

Возникает риск того, что инвестор может купить какой-то актив и вместо ожидаемой прибыли он получит убытки.

1.1.2. Идея защиты от убытков с помощью диверсификации

Иногда можно встретить утверждение, что будто бы идея теории Гарри Марковица состоит в том, чтобы, как говорится, "не класть все яйца в одну корзину", то есть распределять финансы по разным активам.

На самом деле, эта идея о распределении средств инвестора по разным «корзинам» была известна задолго до появления теории Марковица. Финансовые консультанты всегда рекомендовали вместо вложения в один актив, провести диверсификацию своих инвестиционных средств.

Диверсификация, это мера разнообразия распределение средств инвестора по разнородным активам. Например, инвесторам рекомендуется часть средств вложить в акции, другую часть в облигации, третью часть в иностранные валюты, четвертую в банковский депозит, пятую часть в недвижимость, шестую в драгоценные металлы, и т. д.

Акции, облигации, банковские депозиты, и т. п., это всё примеры разнородных активов. Но даже разные акции являются в какой-то мере разнородными активами, особенно, если они соответствуют разным отраслям экономики.

Такая диверсификация финансов по разным активам приводит к понятию инвестиционного портфеля, как совокупность инвестиционных вложений инвестора.

Однако, распределение финансов инвестора в портфеле "на глаз" по интуиции часто очень плохо защищает инвестора от убытков.

Рассмотрим очень простой пример. Допустим, инвестор разделил свои средства на 2 части и на эти части купил иностранные валюты, которые ему показались хорошо растущими относительно его национальной валюты. Допустим, это евро и британский фунт.

Здесь есть диверсификация средств, но эта диверсификация очень плохая. Дело в том, что если евро начнет падать относительно национальной валюты инвестора, то с очень большой вероятностью будет падать и британский фунт. И таким образом весь инвестиционный портфель потеряет свою первоначальную стоимость.

Может вместо британского фунта надо было вложиться в швейцарский франк? Или добавить швейцарский франк к этим двум валютам в качестве третьего актива для подстраховки?

Обе эти идеи очень плохие, так как швейцарский франк в среднем статистически ведет себя также, как евро и британский фунт. Все 3 валюты с большой вероятностью одновременно растут и с большой вероятностью одновременно падают. Если начнет падать одна из этих трех валют, то с очень большой вероятностью упадет стоимость всего инвестиционного портфеля, так как другие валюты тоже упадут.

По аналогии с яйцами и корзинами, эта ситуация соответствует такой, когда все яйца хотя и разложили по двум или трем корзинам, но все эти корзины несет в руках один человек. Если этот человек запнется и упадет, то одновременно разобьются яйца во всех его корзинах. Разложение по разным корзинам тут ничем не поможет.

Понятно, что в портфель с евро надо включить не британский фунт и не швейцарский франк, а какие-то другие валюты, которые при падении евро не стали бы падать вместе с евро. Нужен какой-то актив, поведение которого не зависит от поведения валюты евро.

Есть много других валют, которые можно попробовать сочетать в одном портфеле с евро. Но сразу же возникают 2 вопроса:

1. А какая из этих валют лучше всего будет сочетаться с евро? То есть, что в первую очередь надо добавить к евро?

2. А если добавить к евро не одну валюту, а несколько, то как они будут сочетаться уже между собой? Не получится ли, например, с долларом США и канадским долларом такая же ситуация, как с евро и британским фунтом?

Если продолжать нашу аналогию с корзинами и яйцами, то получается, что все корзины надо не просто раздать нескольким людям. Нужно, чтобы все эти люди не пошли бы одновременно одной компанией и не поскользнулись бы на одном и том же месте. Чтобы донести максимальное количество яиц, все эти люди должны идти разными дорогами в разное время в разной обуви. Тогда какая-нибудь случайность, плохо повлиявшая на одного человека, не скажется на других людях.

Так вот теория Марковица все эти качественные рассуждения переводит в строгие числа. В результате мы получаем инструмент для оценки того, на сколько хорош наш инвестиционный портфель. Мы можем сравнивать друг с другом разные инвестиционные портфели не по качественным рассуждениям, а по количественным параметрам и выбирать более лучший портфель, сравнивая между собой уже числа.

1.2. Суть теории Марковица

Инвестиции, это вложение капитала с целью получения прибыли. Инвестиции, это рискованное занятие, так как можно не получить прибыль или даже потерять все средства, направленные на инвестирование.

В инвестициях существуют разного рода риски. Теория Марковица, это не какая-то универсальная теория, которая рассматривает все риски, какие только бывают. В портфельной теории Марковица рассматриваются только риски, связанные с волатильностью доходности инвестиционного актива (см. ранее раздел 1.1.1.). Чем выше волатильность доходности инвестиционного актива, тем выше у него риск получения убытков. И, наоборот, чем ниже волатильность доходности актива, тем инвестиции в этот актив более надежные.

Гарри Марковиц заметил, что если купить не один, а несколько активов, то их риски, понимаемые именно, как волатильность доходности, в общем случае, складываются нелинейно. И результат общего риска зависит от взаимной корреляции доходности этих активов.

Здесь уже не обойтись без небольшого введения в математику.

1.2.1. Количественные показатели

Доходностью в теории Марковица считается возврат на инвестицию:

Допустим, инвестор купил актив стоимостью P

, а вернул себе (например, продал этот актив) стоимость P

. Значит, инвестор заработал разницу P

– P

. Эту разницу надо разделить на сумму вложений, то есть на стоимость актива P

, по которой он приобрел этот актив. Эта формула и выражает определение понятия доходности инвестиции (возврата на инвестицию).

Все книги на сайте предоставены для ознакомления и защищены авторским правом