978-5-04-107288-9
ISBN :Возрастное ограничение : 12
Дата обновления : 22.05.2021
Ведущие компании индустрии испытывают потребность в изменении мира, стремятся сформировать мировоззрение мирового технологического общества. Они собирают сильные научно-исследовательские группы и проводят масштабные исследования. Их цели соответствуют позиционированию компаний и совершенствованию их продуктов. DeepMind, Google, Baidu и некоторые другие гиганты отрасли разделяют эту позицию.
Обновление исследовательских механизмов также является важным шагом на пути развития. Ведь традиционно ИТ-индустрия и наука не очень успешны в коммерциализации результатов исследований. Недавние OtherLab или OpenAI и некоторые другие стартапы искусственного интеллекта активно набирают собственные исследовательские команды. И это превращается в тенденцию. Потому что для разработки структурированных и устойчивых решений требуются усилия различных организаций (ранние экосистемы, крупные предприятия, учебные и научно-исследовательские учреждения).
Инвестиции являются важным фактором, который необходимо учитывать. С углублением интеллектуальной революции, ожесточается борьба за таланты. Это приводит к росту стоимости искусственного интеллекта. Некоторые стартапы привлекают внушительные суммы денег, потому что в долгосрочной перспективе отдача от инвестиций может быть очень велика (высокий риск/высокая отдача). Ключ к планированию инвестиций заключается в приоритезации ресурсов и продуманном процессе принятия решений, отражающем риски, связанные с искусственным интеллектом.
После того, как все необходимые условия сойдутся, лидерские качества человека станут решающим фактором, ценнейшим и перспективнейшим. Эпоха ИИ базируется на технологии, которая абсолютно не похожа на предыдущую (в качестве ядра выступают нейронные вычисления). Поэтому она требует от руководства высокого внимания и ответственности. Кроме того, новые отрасли в сфере ИИ настолько разнообразны и междисциплинарны (все, что вы можете себе представить от генетики до робототехники), что компаниям требуются люди, способные работать с инновациями (найти их непросто, потому что сегодняшнее общество сосредоточено на развитии узкоспециализированных отраслей). Билл Бакстон, главный научный сотрудник Microsoft Research, предлагает эффективные решения для создания новаторской команды высшего руководства.
Стоит напомнить, что в основе инновационного «маховика» ИИ лежит цикл обратной связи: данные – знания – опыт – новые данные. Оптимизация емкости и скорости этого цикла обратной связи является важной составляющей планирования.
Необходимая макросреда
Предприятия и научно-исследовательские институты не могут работать без хорошей макросреды. Национальный китайский интеллектуальный план призывает к созданию интеллектуальной инфраструктуры на уровне страны. Ведь чтобы встретить эру искусственного интеллекта, необходимо создать надлежащую почву.
Во-первых, необходимо обеспечить беспрепятственный доступ к данным. Данные становятся стратегическим активом для многих организаций и могут рассматриваться как новый тип «природных ресурсов». Для правительств, в частности, данные могут быть полезны в процессе разработки стратегии политического управления. Это может послужить стимулом для более широкого внедрения инноваций.
Во-вторых, нужны инструменты и платформы с открытым исходным кодом. Эра искусственного интеллекта требует нового стека программного обеспечения Silicon+. При этом важно, чтобы инструменты и платформы с открытым исходным кодом, такие как PaddlePaddle, были доступны и разработчикам, и новаторам. Глядя в будущее, мы должны постоянно снижать степень участия человека в процессах и передавать задачи инструментам и модулям. Например, AWS (Amazon Cloud Service) делает проще вычисления, а некоторые AI-as-a-service (AI-Service) делают технологии ИИ более доступными.
В-третьих, новаторы должны быстро создавать рыночные и политические условия для своих продуктов и пользователей. Это также очень важно. Потому что инновационный «маховик» ИИ требует быстрого цикла обратной связи.
В-четвертых, в начале эпохи искусственного интеллекта поощряются непрерывные прикладные исследования. В частности, разработка ML-алгоритма (машинного обучения), который может получать знания из данных и создавать опыт – ядро инновационного «маховика». На данном этапе развития ИИ непрерывные исследования – важная составляющая деятельности для всех предприятий этой сферы.
В-пятых, следует озаботиться образованием. Требования ИИ к человечеству неизбежно приведут к проблеме нехватки талантов. Образование должно стать обширнее и качественнее для того, чтобы для проектирования и реализации алгоритмов машинного обучения хватало человеческого ресурса.
Наконец, должен быть сформирован новый структурированный подход, превращающий знания внешнего мира в организованный и доступный материал. Это имеет решающее значение для внедрения инноваций ИИ во многие компании и сферы жизни.
Культура и управление интеллектуальным обществом
Потребуются десятилетия, чтобы искусственный интеллект начал полноценно функционировать. Амбиции и претензии на изменения мира требуют долгосрочного инвестирования. Поэтому долгосрочное планирование и стратегическое управление играют важную роль в эпоху искусственного интеллекта. Нас ожидает трансформация культуры бизнеса и управления во всем мире.
В частности, это требует, чтобы руководство устанавливало более крупный «лицензионный пакет». Он позволит руководящей группе иметь больше свободы и возможностей делать ставки на инновации. Это важный аспект ежегодного управления. Маск говорил, что «инновация, потерпевшая неудачу, не должна быть наказана».
От компаний, пострадавших от ИИ, потребуется обновление всей организации, чтобы влиться в обновленный мировой ландшафт. Высшее руководство должно жестко держать руку на пульсе и управлять процессами трансформации.
Одним из факторов, связанных с долгосрочным менеджментом, является создание новой организационной структуры, которая будет достаточно зрелой, чтобы легко адаптироваться к изменениям, вызванным искусственным интеллектом. Alphabet (Управляющая компания Google после реорганизации) – одна из самых ранних попыток. В этом отношении китайские компании внедряют больше управленческих инноваций, чем США.
Культура – это сила организации, которая может выйти за рамки нескольких поколений лидеров и деловой активности. Для многих зрелых компаний (Google, Baidu) доступ к возможностям искусственного интеллекта представляет собой серьезную проблему: потребность в новых талантах, новых патентах на технологии и создании новой культуры. Очень важно быть активными, терпеливыми и настойчивыми, поскольку культурная трансформация является одной из самых сложных задач для зрелого предприятия. Кроме того, забыть о старых методах работы гораздо сложнее, чем внедрить новые.
Так как мы находимся на начальной стадии развития искусственного интеллекта, привлечение и поддержание специалистов очень важно для управленцев.
В целом, долгосрочное планирование и стратегическое управление являются ключом к использованию любой важной возможности не только в эпоху ИИ. Как изменить существующую инфраструктуру, чтобы привлечь больше денег, талантов и добиться больших результатов – интересная и сложная задача для лидеров бизнеса. Решение глубоких, интересных и сложных проблем является признаком прогресса человечества.
Современное состояние развития технологий ИИ
Статьи на темы искусственного интеллекта, глубокого обучения и новых исследований выходят каждый день. Сегодня, как в эпоху Возрождения, наука меняется на глазах. Ведь истинный смысл науки заключается в том, чтобы наблюдать за миром и обобщать знания. Мы наблюдаем, как мир становится все более компетентным. Мы используем алгоритм глубокого обучения, и появляются новые знания.
Это не только физика, биология, материаловедение… Каждая область науки отчаянно быстро движется вперед. Таким образом, человечество находится в состоянии быстрого прогресса. Давайте в конце этой главы снова обратим внимание на квантовые вычисления.
Отметим очень интересную связь между искусственным интеллектом и нейро-вычислительными структурами, использующими распределенное векторное представление слов. Их основные операции основываются на линейной алгебре, а не булевой. Это говорит о том, что человеческий мозг в чем-то схож с физикой. Даже ученые предполагают, что человеческий мозг работает по принципу, аналогичному квантовой физике, теори и алгоритму квантовых вычислений.
Квантовые вычисления имеют важное значение в сфере искусственного интеллекта. Microsoft и Google, например, создали лабораторию квантового ИИ и ведут активную разработку проектов в этой области. Вопрос об уместности квантовых вычислений в ИИ не должен рассматриваться совсем. А вот вопрос о том, когда квантовые вычисления станут частью искусственного разума, уместен. Существуют разные мнения на это счет. Некоторые отмечают промежуток времени до 5 лет или даже меньше до того момента, как появятся ранние квантовые машины.
Почему квантовые вычисления так важны? Потому что они тесно соприкасаются с человеческим интеллектом. В основе квантовых вычислений лежит квантовая суперпозиция. Квантовая способность изменяет состояние при добавлении энергии. Современный компьютер может занимать только одну позицию – цифру 0 или 1. В то время как квантовые суперпозиции могут занимать три позиции одновременно. А их вычислительная мощность растет экспоненциально.
Преимущество в том, что многие проблемы с данными могут быть решены с помощью квантовых вычислений. Предыдущий подход – это разложение чисел. Например, шифрование и дешифрование данных, декомпозиция с использованием простых чисел. Довольно трудно получить большое число при разложении простых. Например, вычислить разрушение Земли таким образом практически невозможно. Но с помощью квантового алгоритма вычислений это станет не только возможным, но и относительно быстрым процессом. Этот алгоритм сделает машинное обучение вполне естественным.
В связи с этим необходимо усовершенствовать аппаратное обеспечение. В настоящее время все аппаратные средства базируются на булевой алгебре, а основные вычисления глубинного обучения обеспечиваются матричными и тензорными расчетами, а не вычислениями 0 и 1. И они должны выполнять дифференциальные операции. Квантовые вычисления идентичны, и каждый раз, когда квантовая энергия изменяется, образуется вычислительная связь между матрицей и тензором. Природа этих вычислений на самом деле та же самая, что и в человеческом мозге. Мэтью Фишер, Пан Цзяньвэй, Чжу Цин Чжи и другие ученые считают, что суть сознания – это квантовая запутанность.
В 2007 году журнал Nature опубликовал результаты лабораторных исследований, которые проводились под руководством Грэма Флеминга в Калифорнийском университете в Беркли. В ходе исследования лазеры сверхкоротких импульсов были применены для облучения светособирающих комплексов. Это помогло установить, что квантовые эффекты играют незаменимую роль в фоточувствительном синтезе. Революция в области квантовых вычислений – это доказательство единения природы и человеческого интеллекта. Открытие влияния квантовых эффектов на живые организмы в значительной степени вдохновило человечество на новые исследования квантовых вычислений и человеко-машинных комбинаций.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/robin-li-29918481/baidu-kak-kitayskiy-poiskovik-s-pomoschu-iskusstvennogo/?lfrom=174836202) на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
notes
Примечания
1
Поэма на тему «интеллектуальная революция» написана разумом Baidu. Она имитирует человеческие эмоции, однако существенно отличается от них (для того, чтобы гарантировать оригинальность, поэма публикуется без правок и модификаций). На мой взгляд, ничто не может лучше подойти в качестве предисловия к книге, чем стих, написанный машиной.
2
Используется для представления условной вероятности случайных событий A и B, где P (A | B) – это вероятность того, что в случае B произойдет А.
3
«Знание» – это точка зрения Кевина Келли в книге «Неизбежное», относится к программному обеспечению, которое охватывает все. Он считает, что все будет информационным, даже если данные о продажах и частоте кликов будут автоматически выгружаться в таблицу.
4
Чэнь Цзинжунь известен тем, что доказал теорему Гольдбаха «1+2». Репортаж Сюй Цзи, «Гольдбаховская гипотеза», был опубликован в первом номере журнала «Народная литература» в январе 1978 года Чэнь Цзинжунем, имя которого в то время стало нарицательным.
5
За последние несколько лет нейросети научились понимать, что за объекты находятся на фотографии и как они взаимойдействуют друг с другом. Например, чашка стоит на столе, а ложка находится внутри чашки. В экспериментальных сетях достигнут и обратный эффект: по текстовому описанию нейросеть способна воссоздать изображение, например женщину, едущую на лошади по лугу. – Прим. науч. ред.
6
Триллион операций в секунду – Прим. науч. ред.
7
Великобритания запустила «геномную программу 100 000 человек» в 2014 году, а США и Китай объявили о завершении сбора геномных данных до 1 миллиона человек. Данные, полученные всемирно известной компанией по секвенированию генов Illumina Instruments sequencing, удваиваются каждые 12 месяцев. Это огромная «черная дыра данных», а также золотодобывающая шахта данных.
8
Несмотря на возросшую активность за последние годы, даже передовые проекты с беспилотными такси не допускают перемещение авто по городу без оператора внутри, пусть и не на водительском кресле. – Прим. науч. ред.
Все книги на сайте предоставены для ознакомления и защищены авторским правом