Алексей Семихатов "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей"

grade 4,8 - Рейтинг книги по мнению 40+ читателей Рунета

Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения. Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель». В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие. Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.

date_range Год издания :

foundation Издательство :Альпина Диджитал

person Автор :

workspaces ISBN :9785001398035

child_care Возрастное ограничение : 0

update Дата обновления : 14.06.2023

3. Про то, как размеры эллипсов, по которым движутся разные планеты, соотносятся с временем их полного оборота вокруг Солнца. Не только каждая планета сама по себе следует законам, но и каждая пара планет подчиняется строгой и одной для всех математике. «Размером» эллипса в данном случае является его большая полуось – расстояние от центра (а не от Солнца!) до точки наибольшего удаления. Для любой пары планет Кеплер предлагает поделить друг на друга их большие полуоси, а результат возвести в квадрат. В качестве второго действия нужно поделить друг на друга продолжительности года на каждой планете, а результат этого деления возвести в куб. Получится, говорит Кеплер, одно и то же. Чем дальше планета от Солнца, тем больше времени занимает ее полный оборот – не только из-за того, что орбита длиннее, но еще и из-за того, что скорость планеты меньше (в 4 раза дальше – в 8 раз дольше; в 9 раз дальше – в 27 раз дольше).

Кеплер начал с определения формы орбиты Земли, потом это сильно облегчило ему задачу найти форму всех других орбит. Но как же было подступиться к орбите тела, с которого были сделаны все наблюдения? Понадобилось третье, кроме Земли и Солнца, тело, а именно – Марс. Но, поскольку орбита Марса была равным образом неизвестна, Кеплер использовал его как источник некоторого набора отдельных точек («дискретной» информации). Ключ – момент, когда Солнце, Земля и Марс оказались на одной прямой. (Такое положение трех тел случается с неплохой точностью, потому что орбиты Земли и Марса лежат почти в одной плоскости; Земля при этом совершает один оборот вокруг Солнца быстрее, чем Марс.) Направление этой прямой относительно звезд следовало зафиксировать; оно сыграет «опорную» роль. А далее – вот источник дискретности в применяемой схеме! – требовалось знать продолжительность марсианского года (это отдельный вопрос, ответ на который у Кеплера был). Через один марсианский год Марс окажется снова на той же прямой, но Земля нет. Для наблюдателя с Земли Марс и Солнце будут видны под некоторым углом друг к другу. Этот угол, который можно непосредственно измерить, – полдела. Вторая половина – это линия «Солнце – Земля» в этот же момент: необходимо определить ее направление относительно звезд, что позволит найти угол, который она образует с «опорным» направлением. Принимая расстояние от Солнца до Марса в «опорном» положении за единицу, находим треугольник по стороне и двум углам. Мы определили (!) точку на земной орбите. После этого все вычисления надо повторить, найдя в таблице положение Марса и Солнца относительно звезд еще один марсианский год спустя, и еще один и так далее. Каждый раз таким образом появляется по точке; Кеплер сумел уложить все эти точки на слабо вытянутый эллипс (не поддавшись искушению заявить о круговой орбите в пределах точности вычислений!). Когда орбиты всех планет были найдены, настала очередь следующей задачи – угадывать законы движения планет по этим орбитам. Это означало делать какие-то допущения (с каких начать?!), проверять их, определяя с помощью таблиц пространственное положение планет в разные моменты времени, и если допущения не подтверждались, то придумывать и проверять другие. Перед нами одинокий человек в окружении пустоты и сферы звезд, вооруженный числовыми таблицами данных и одержимый страстным желанием своими силами разобраться в устройстве известного ему мира.

Кеплер не открыл для нас планеты – они были известны с доисторических времен. Но он в некотором роде открыл для нас Солнечную систему, показав, какова в ней система – какой порядок там действует. Сейчас все предсказания, скажем, взаимного расположения Земли и Марса, необходимые для планирования путешествий между ними, математически делаются на основе тех самых кеплеровых эллипсов (хотя и требуют на фоне главного эффекта учитывать ряд дополнительных факторов, с которыми у нас будет еще немало поводов познакомиться). Про орбиты планет, да и не только планет, часто говорят «кеплеровы». Космический телескоп «Кеплер» проработал (не без приключений) до 2018 г., исследовав в общей сложности 530 506 звезд и открыв 2662 экзопланеты. Небольшая выборка экзопланет, сравнимых с Землей по размеру и находящихся в зоне обитаемости[5 - То есть на таком удалении от светила, при котором на планете не слишком холодно и не слишком жарко, так что там может существовать вода в жидкой фазе при не слишком высоком давлении.], приведена на рис. 1.3. Поиск таких объектов заведомо невозможен без знания о том, что искомые планеты – о существовании которых Иоганн Кеплер не мог и помыслить – движутся вокруг своих звезд по кеплеровым орбитам. По-моему, «Кеплер» – подходящее название для такого телескопа.

Рис. 1.3. Земля и несколько экзопланет. Данные им названия отражают тот факт, что они открыты с помощью космического телескопа «Кеплер»

*****

Относительность и инерция. Современник Кеплера Галилей не бросал предметы с колокольни на Кампо-деи-Мираколи в Пизе, за возможным исключением незадокументированных случаев баловства[6 - Этот эпизод придумал Винченцо Вивиани для первой официальной биографии Галилея, которую он сочинял по заказу великого герцога Тосканского, ориентируясь на пример «Жизнеописаний» Вазари; духу Вазари эта история действительно вполне соответствует.]. Галилей первым всерьез направил телескопическую трубу в небо и совершил революционные открытия (включая спутники Юпитера, кольца Сатурна, горы на Луне, пятна на Солнце и фазы Венеры); однако среди тех многочисленных вещей, которые он постоянно был готов обдумывать, предметом его долгосрочного интереса было движение.

Для нас важны два глубоких свойства движения, осознание которых началось с Галилея: относительность и инерция. Галилей усматривает их в природе вещей с помощью того, что ему неизменно удавалось с блеском: он извлекает «идеальные» следствия не из идеальных, а вполне реальных опытов, а также применяет логический анализ путем постановки мысленных экспериментов. Успехи в таком подходе к исследованию природы, собственно говоря, и снискали ему титул основоположника научного метода (что, впрочем, известно нам сейчас, но не было известно ему самому). Если художник рисует натуру, находясь вместе с ней в каюте на корабле, который плавает в виду берега, то при идеальном состоянии моря, рассуждает Галилей, художник может забыть, что он находится не на берегу, а на корабле; ничто не будет мешать созданию картины. Но на взгляд людей, стоящих на берегу, рука художника участвует в движении, включающем движение самого корабля. Следовательно, если корабль не качается и не дергается, его движение не оказывает никакого влияния на происходящее в каюте. Отсюда происходят две идеи: одну впоследствии стали называть принципом относительности, а другая, важная для Галилея (и неизменно важная с тех пор), – независимость движений, т. е. движение кисти относительно холста и движение холста относительно берега независимы. Развивая именно этот тезис, Галилей стал первым, кто теоретически получил параболу для «стрелы» (тела, брошенного под углом к горизонту). Исходя из того, что горизонтальное и вертикальное движения независимы, он замечает, что горизонтальное движение равномерно, а вертикальное ускоренно; их сложение и дает параболу – вывод, который Галилей считал одним из главных результатов своей теории движения.

Галилею принадлежит и сама идея равноускоренного падения, причем одинакового для всех тел[7 - Последнее обстоятельство, как выяснилось впоследствии, может служить проводником глубоко в природу мира, и на дальнейших прогулках нам предстоит познакомиться с впечатляющим развитием событий.]. Доминировавшая до того точка зрения опиралась на представление о естественности равномерного движения; это, по-видимому, должно было означать, что после разжатия руки яблоко сразу приобретает ту скорость, с которой ударится о землю. Исходный же пункт рассуждений Галилея состоял в том, что падающие тела, когда им «ничто не мешает» (что тоже не так просто организовать), изменяют скорость по мере того, как падают. Но как меняется скорость? Галилей установил, что скорость увеличивается в течение всего падения и что тело последовательно проходит «через все градусы скорости» (этот подход, существенно расходящийся со взглядами Аристотеля, присутствует уже здесь, хотя и не принадлежит лично Галилею: приписывать качествам определенные «градусы» – не античная, а средневековая идея). Довольно долго он думал, что скорость увеличивается равными порциями через равные отрезки пути, но потом логическими рассуждениями отверг эту идею, а вместо этого показал, что скорость растет равными порциями за равные промежутки времени – пропорционально времени, как мы бы сейчас сказали. Я часто напоминаю себе, что все это происходило в отсутствие часов, хоть сколько-нибудь пригодных для точных измерений, и – что, может быть, даже более важно – до формализации понятия ускорения[8 - Галилею удалось выразить закон равноускоренного движения («естественно ускоренного», в его трактовке), не вводя никакой количественной меры для ускорения; собственно говоря, при естественно ускоренном движении тело проходит все градусы скорости, но никаких градусов ускорения нет.]. Три с половиной столетия спустя, 2 августа 1971 г., командир «Аполлона-15» Дейв Скотт, стоя на поверхности Луны перед своим лунным модулем, произнес, глядя в камеру:

Вот в левой руке у меня перо, а в правой – молоток. И можно сказать, что одной из причин, по которой мы сюда добрались, был джентльмен по имени Галилео, живший очень давно, который сделал довольно существенное открытие о падающих телах в гравитационных полях. И мы подумали: где найти лучшее место, чтобы подтвердить его результаты, как не на Луне? Так что мы решили, что попробуем это вам сейчас показать. ‹…› Я отпущу оба предмета, и, будем надеяться, они достигнут поверхности одновременно.

[Он разжимает перчатки – молоток и соколиное перо падают на лунную поверхность в согласии с ожиданиями.]

Как вам такое?!

Справедливости ради надо сказать, что Галилей развивал не идею притяжения, а тезис о естественности равноускоренного движения; тем не менее одинаковое ускорение для всех падающих тел в отсутствие сопротивления воздуха – его открытие.

Как тебе такое, Галилео Галилей?

Кроме того, Галилей смог усмотреть в свойствах движения то, что позднее стали называть инерцией (склонность движущихся тел сохранять свое состояние движения или в частном случае – покоя), хотя слова «инерция» сам Галилей не употребляет. Свойство каждого тела двигаться по инерции не вполне очевидно на первый взгляд, потому что мы воспринимаем разные свойства вещей одновременно: тела вокруг нас не сохраняют состояние своего движения из-за того, что на них действует сила трения или сила сопротивления среды. Не зная заранее всех действующих здесь факторов, не так легко выделить свойство инерции и объяснить, как оно проявляет себя, когда других факторов нет. Здесь снова в полной мере потребовалась способность Галилея логически доводить постановку эксперимента до некоторого предела – скажем, предела исчезновения трения, – добиться которого в реальности невозможно, но свойства которого тем не менее делались ясными исходя из шагов, приближающих реальную постановку к идеальной.

Галилею же принадлежит мысль, что книга природы написана языком математики:

Я распознал у Сарси твердое убеждение в том, будто при философствовании необычайно важно опираться на мнение какого-нибудь знаменитого автора ‹…› В действительности же, синьор Сарси, все обстоит не так. Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту[9 - Пер. Ю. А. Данилова.].

Вопрос о том, почему математика настолько эффективна в естественных науках, обсуждался многократно, и простого ответа на него нет, но рассуждения и примеры, приводимые различными авторами, читать интересно. Как бы то ни было, математика снабжает нас «движком» для того, чтобы делать выводы. Она особенно ценна в этом качестве, когда мы выходим за пределы области, где помощником может служить «здравый смысл». Это набор представлений, выработанных в рамках нашего ограниченного опыта, и они вполне могут отказывать (и отказывают!), когда этот опыт расширяется. Как следствие такого положения вещей математика скрыто присутствует почти везде на этих прогулках.

*****

Законы движения. Но почему три закона Кеплера таковы? Почему Солнце в фокусе? Почему планеты движутся именно так?

Ответ на каждое «почему» должен опираться на нечто, что принимается без объяснения, иначе никакое объяснение не останавливается и поэтому перестает быть объяснением. Ответы, которые удается дать довольно близко к тому уровню, где уже приходится разводить руками, называются фундаментальными. В момент формулировки законов Кеплера они сами, вероятно, считались бы фундаментальными, реши тогда кто-нибудь классифицировать подобные утверждения таким образом. Как-никак эти законы были приложимы ко всем известным планетам. Но 80 лет спустя уже нельзя было так думать, потому что фундаментальными оказались другие законы – Ньютона[10 - Ньютоновы «Начала» (Philosophi? Naturalis Principia Mathematica) вышли в 1687 г.]. И это были законы совсем другого сорта. Из них следовало множество утверждений, включая и эллипс для планеты, и параболу для стрелы, не испытывающей сопротивления воздуха (и заодно – направление мысли, позволяющее как-то учесть это сопротивление). События начали разворачиваться стремительно, потому что фокус внимания сместился на причины.

Причины наблюдаемых движений Ньютон сформулировал в виде законов движения – утверждений совсем иного свойства, чем законы Кеплера. Законы Ньютона напрямую ничего не говорили о том, по какой траектории полетит стрела или планета! Вместо этого они предлагали всем заинтересованным лицам действовать более прогрессивным образом: определить траектории самостоятельно (!) на основе буквально нескольких принципов. Ключевой аспект всей схемы – универсальность этих принципов. Их меньше, чем пальцев на руке, но их можно применять снова и снова – и к явлениям уже известным, и к тем, которые могут нам встретиться когда-нибудь в будущем. Это довольно удивительно: ничем не похожие явления подчиняются одним и тем же общим принципам. Слово «принципы» здесь надо понимать в первую очередь как уравнения. Это не уравнения типа x

+ 3x

+ 3x – 1 = 0, решением которых могут являться числа (например, как в данном случае, число, примерно равное 0,259921); вместо чисел неизвестным тут является поведение, или, чуть более технически, траектории. Всякое движущееся тело с течением времени описывает траекторию, и предложенная Ньютоном схема сводилась к поиску того, какова эта траектория, т. е. как именно координаты чего-то движущегося зависят от времени. Входные данные для этого состоят в воздействиях, которым подвергается то, что движется, – планета, или стрела, или что угодно. Выражаясь еще чуть более технически, требовалось решить уравнения, где неизвестными вместо чисел были зависимости от времени – функции. Слово «функция» в таком контексте означает не набор обязанностей, а именно характер зависимости: если ваш вклад в банке – возрастающая функция времени, это значит, что сегодня у вас больше денег, чем вчера; иногда становятся интересны и другие подробности, например, сколь быстро эта функция времени растет, меняется ли сама скорость роста и т. д.[11 - Тема, привлекающая к себе неослабевающее внимание: а каким уравнениям подчиняются функции, определяющие доходность финансовых инструментов? Сама постановка этой задачи навеяна успехом стратегии «выразим наши представления о причинах в виде уравнений, а потом будем их решать».] Все то же самое можно спрашивать и про разные другие функции. Скорость самолета, разгоняющегося на взлетно-посадочной полосе, – тоже функция времени, и важная часть истории состоит в том, через какое время скорость достигнет значения, обеспечивающего отрыв от земли. Чтобы узнать это, необходимо понять причины.

Прежде всего, говорит нам Ньютон, движение «сохраняется», если то, что движется, предоставить самому себе, т. е. никак не воздействовать на него со стороны. Это факт, понятый уже Галилеем; Ньютон определенно действовал не на пустом месте[12 - «Если я видел дальше других, то потому, что стоял на плечах гигантов». Ньютон родился в год смерти Галилея. Я бы оценил разницу между ними в три поколения.]. В воздушном хоккее шайба продолжает двигаться туда, куда вы ее направили, пока не испытает воздействия еще какого-то предмета (бортика или биты). Умение забивать голы в этой игре состоит в том, чтобы привести шайбу в движение устраивающим вас образом – направить ее в ворота, и после этого ничего больше делать не надо, потому что от вас уже ничего не зависит, пока шайба не испытает какое-то следующее воздействие, из-за которого изменит свое движение; в промежутке же она движется «сама», причем по прямой и с заданной скоростью[13 - Конечно, если бы поле для воздушного хоккея имело размер хоккейного-с-шайбой, то по мере движения шайбы было бы заметно ее замедление из-за сопротивления воздуха, но в общепринятых вариантах воздушного хоккея это сопротивление никак не успевает себя проявить.]. В этом и состоит «сохранение движения» в отсутствие сил, оно же – закон инерции Галилея, и оно же – первый закон Ньютона. У инертности есть количественная мера: это масса.

Итак, если не воздействовать, то движение сохраняется. Как только этот факт полностью осознан, естественно предположить, что если как-то воздействовать, то движение изменится. Осталось только сказать как, и Ньютон примерно это и говорит, но только не вполне прямо, потому что природа отвечает на этот вопрос не прямо, а косвенно. Чтобы высказываться точнее, нам понадобятся средства. Одно из них – количество движения. Оно тем больше, чем быстрее нечто движется и чем больше его масса. Грузовик, весящий 10 тонн и движущийся со скоростью 30 км/ч, имеет то же количество движения, что и автомобиль весом 2 тонны на скорости 150 км/ч. Количество движения – это просто произведение массы на скорость, с тем только уточнением, что, кроме величины, оно имеет еще и направление – такое же, как у скорости; в общем, как и скорость, это стрелка (вектор). Когда говорят о сохранении (неизменности) таких стрелок, это означает, что не меняется ни их длина, ни направление (шайба в воздушном хоккее летит по прямой, пока на что-нибудь не натолкнется), а изменить стрелку означает изменить ее длину или направление (или и то и другое).

Высказывание, что движение сохраняется, в точной формулировке звучит как «количество движения сохраняется» в отсутствие внешних воздействий (сил). Если же какие-то силы действуют, то количество движения меняется, и, главное, меняется быстро или медленно в зависимости от того, велика ли сила. У каждого изменения есть свой темп (если это не приводит к недоразумениям, можно говорить «скорость изменения»). И вот темп изменения количества движения как раз равен полной действующей силе, сообщает нам Ньютон. Просто равен. Нет никакой возможности сосчитать, сколько раз это высказывание применялось для описания мира. В нем содержится указание на причину: это сила. Сила тяги двигателей самолета, разгоняющегося для взлета, определяет, как быстро меняется количество движения самолета – что в салоне ощущается как эффект прижимания к спинке кресла; в горизонтальном направлении на самолет действуют еще и силы сопротивления (рис. 1.4), и полный баланс этих сил определяет изменение – нет, не скорости, а количества движения; именно поэтому столь важна взлетная масса («взлетный вес») самолета: одна и та же прибавка к количеству движения для самолета, в полтора раза более тяжелого, означает в полтора раза меньшее увеличение скорости. Сила, действующая здесь и сейчас, «не отвечает» за итог – за то, что получится, скажем, в конце взлетно-посадочной полосы. Она отвечает только за то, быстро или нет меняется количество движения здесь и сейчас.

Рис. 1.4. Силы, действующие на самолет во время разгона

Сила говорит количеству движения, как ему изменяться

Ньютон не мог думать о решении задачи про взлетающий самолет, как не мог думать и о решении своих уравнений на компьютере. Я затрудняюсь даже сказать, о какой из этих двух тем он «не мог думать в большей степени». Но современные компьютеры определяют, как будут развиваться события при взлете самолета или ракеты, действуя в точности так, как это наверняка представлял себе Ньютон: если в первую миллисекунду после старта действует определенная сила, то приобретенное количество движения – это и есть та самая сила, умноженная на прошедший малый интервал времени (ту самую миллисекунду). В следующую миллисекунду сила тяги может измениться, а кроме того, появляется сила сопротивления со стороны воздуха. Две силы действуют в противоположных направлениях, одну надо вычесть из другой, а результат умножить снова на выбранный интервал времени длиной в миллисекунду, и так мы узнаем, сколько же количества движения прибавилось за вторую миллисекунду. Потом мы точно так же поступаем с третьей миллисекундой и не забываем суммировать все накопленные прибавки к количеству движения. Если нам нужна особая точность (и уж во всяком случае, если речь идет о взлете ракеты), то надо вспомнить, что по мере израсходования топлива уменьшается масса, поэтому пересчет количества движения в набранную скорость надо производить внимательно, помня, что и масса меняется от миллисекунды к миллисекунде. Например, ракета-носитель «Сатурн V» сжигала – и выбрасывала из себя – 15 кг смеси из горючего и окислителя в миллисекунду, т. е. 15 тонн в секунду.

Поведение – результат сложения причин

Стратегия, позволяющая узнать, что получится, т. е. делать предсказания о том, что будет, состоит в суммировании накопленных прибавок. Компьютер буквально суммирует накопленное по малым интервалам времени, а Ньютон (изобрел и) широко применял математический метод такого суммирования. Он называется интегрированием и не требует, чтобы разбиение на малые интервалы времени выполнялось буквально: такое разбиение встроено в сам метод, причем наилучшим возможным способом. Дело в том, что если для самолета миллисекунда – это малый интервал времени в том смысле, что действующие силы (да и масса) практически не успевают измениться, то для других процессов (например, горения или взрыва) расчет с шагом в миллисекунду даст неправильный результат, потому что за это время многое успевает измениться, и интервал времени надо выбирать еще короче. Вся идея интегрирования состоит в том, что интервал «уже взят» меньше любого, который вы в состоянии назвать. Поэтому интегрирование как математическая процедура точнее любого вычисления на компьютере. Другое дело, что результат интегрирования далеко, далеко не всегда удается выразить в обозримых терминах (т. е. используя привычные функции): хотя задача поставлена математически точно, записать точный ответ мы часто оказываемся не в силах. В таких случаях или изобретают приближенные способы осуществить математическую процедуру, или, конечно же, «сажают задачу на компьютер», т. е. применяют одну из многочисленных программ, которые, да, суммируют малые накопления.

Промежуточный итог: Ньютон не считал (и с тех пор никто, в общем, не считает), что законы природы могут описывать картину целиком. Кеплер со своими тремя абсолютно верными законами, в которых констатировалось поведение в целом, остался в прошлом. Законы Ньютона говорят, как причины (силы) определяют темп изменения количества движения. А дальше уж что получится путем «накопления», то получится – или на компьютере, или с помощью специальной математической процедуры. Если не удается ни то ни другое, то это наша проблема, а не проблема природы, в которой все «само себя суммирует» по мере того, как течет время: разнообразные причины постоянно действуют, накапливаемые изменения, в свою очередь, рождают новые причины, которые снова влияют, и так далее; время – это и есть способ упорядочения действующих причин и накапливающихся следствий.

*****

Всеобщее притяжение. Причины изменений количества движения планет в Солнечной системе (и подоплека законов Кеплера) – притяжение. Это ключевой дополнительный постулат, без которого у Ньютона ничего бы не получилось. Все тела притягивают друг друга. Одни делают это сильнее, другие слабее. Мерой («гравитационным зарядом») является масса каждого тела – то, что мы обычно измеряем в килограммах. Никакие подробности касательно состава и других свойств тел не имеют значения. Странно, нет? Из всего многообразия свойств материи в данном случае важно только одно число[14 - Еще более странно, что одно и то же число – масса тела – измеряет два совершенно разных свойства: степень инертности и гравитационный заряд, но мы вынуждены отложить обсуждение этой загадки до одной из следующих прогулок.].

Масса – гравитационный заряд

Гравитационные заряды одного знака притягиваются, а масса любого тела может быть только положительной; никакие тела поэтому не отталкиваются. Это делает гравитацию всепобеждающей: нет возможности «закрыть» положительный гравитационный заряд отрицательным и тем самым спрятаться от действия гравитации (нельзя «заземлиться», давая зарядам стечь туда, где они скомпенсируются противоположными). Гравитация слаба (см. добавления к этой прогулке), но неостановима. Гравитация убывает с расстоянием, но делает это не слишком быстро – как обычно говорят, «по закону обратных квадратов». Я никогда не понимал, почему здесь появляется множественное число: в законе тяготения присутствует всего один квадрат всего одной величины – расстояния R между двумя маленькими кусками материи (любой материи, как уже было сказано) массами M

и M

. Сила притяжения между ними равна

Буква G здесь обозначает постоянную, которая, собственно, и выражает интенсивность гравитационного взаимодействия; это одна из Мировых постоянных – величин, встроенных куда-то глубоко в устройство нашей Вселенной. Численное значение этой постоянной – не предмет рассуждений, а экспериментальный факт. При всех «разумных» единицах измерения, выбранных для других входящих в формулу величин, постоянная G весьма мала, из-за этого гравитационное взаимодействие и оказывается таким слабым. Ньютон угадал формулу (1.1) (пришел к ней на основе ряда вспомогательных рассуждений), а многие тысячи раз ее использования с тех пор привели к впечатляющему прогрессу в познании мира[15 - Привычная для нас формулировка «закон всемирного тяготения» содержит неидеальный, с моей точки зрения, перевод слова universal (lex universalis, если с латыни). Лучше было бы говорить «всеобщего», но калька в виде «универсальный закон тяготения» была бы еще лучше, подчеркивая ключевую идею универсальности: в гравитационном взаимодействии участвуют все тела, причем универсальным образом, а именно вне зависимости от того, из чего они сделаны, и любых других особенностей.]. Ньютонова теория тяготения позволяет делать отличные предсказания о движении притягивающих друг друга тел; она описывает и падение яблока, и движение Луны вокруг Земли. Лабораторией для систематических проверок ее предсказаний стала Солнечная система; мы увидим несколько ее триумфов на следующих прогулках.

Постепенно (сильно не сразу), впрочем, выяснилось, что приведенная формула хорошо работает, пока нет быстрых движений, а сама гравитация не адски сильная. В случае «быстрых» и «сильной» приходится довольно радикально менять взгляды на устройство тяготения (прогулка 6), но в Солнечной системе мы окружены «медленными» и «слабой», за одним-единственным астрономическим исключением: это движение планеты Меркурий вокруг Солнца, которое очень немного, но все же отличается от предсказанного по Ньютону (и которое у нас будет еще много поводов обсудить). Эти отличия свидетельствуют, что закон тяготения в форме (1.1) все же не является точным. Средства наблюдений, имевшиеся во времена Ньютона, не позволяли заметить отклонения в движении Меркурия, но у Ньютона были независимые основания для некоторого беспокойства за свой закон тяготения, исходя из того, что мы сейчас бы назвали проблемой передачи информации. Предположим, что Солнце по какой-либо причине внезапно начинает двигаться с ускорением в направлении какой-нибудь выбранной звезды. (Реализовать такое крайне непросто, но это не запрещено законами природы, а физические законы должны корректно описывать явления вне зависимости от того, в людских ли силах эти явления осуществить.) Спрашивается, как скоро Земля почувствует изменения в силе притяжения со стороны Солнца? Каким образом Земле передастся информация о том, где Солнце? Проблема с законом тяготения в виде формулы (1.1) в том, что если продолжить применять ее «как написано» (а что еще делать?!) и в этом гипотетическом случае, то мы вынуждены будем заключить, что изменения силы притяжения передаются к Земле (и вообще куда угодно) мгновенно. Это называется «действие на расстоянии»: эффект мгновенно передается через пустоту. Действие на расстоянии определенно не нравилось Ньютону:

Тот факт, что гравитация должна быть внутренним, существенным образом присуща материи так, чтобы одно тело воздействовало на другое на расстоянии через пустоту без посредничества чего бы то ни было еще, способного передавать воздействие или силу от одного тела к другому, представляется мне таким колоссальным абсурдом, что, как я полагаю, никто со сколько-нибудь развитым пониманием философских вопросов в него не впадет. Гравитация должна вызываться каким-либо агентом, действующим постоянно и в соответствии с определенными законами; но вопрос о том, быть этому Агенту материальным или нематериальным, я оставил на Усмотрение моих читателей[16 - Письмо Ньютона к Бентли, 1692 г.].

Ньютон подозревал наличие Агента

Судя по этому фрагменту (который кажется мне гениальным из-за намека на совершенно неизвестную в то время форму материи – поле), Ньютон понимал, что отгаданный им закон не может быть последним словом в описании гравитации. Тем не менее ему пришлось постулировать закон природы, в котором говорится о силе гравитационного притяжения между двумя малыми кусками массы в зависимости от разделяющего их расстояния, но вообще ничего не сообщается о том, как гравитация распространяется через пространство – грубо говоря, как «движется» сама гравитация (в нашем изложении эта история тоже далеко впереди). Для всех тел Ньютон сформулировал закон движения, в котором ключевую роль играет изменение (количества движения) во времени, но в его законе гравитации не предусмотрена возможность какого-либо изменения гравитации во времени, потому что время вообще не участвует в формулировке этого закона (это статический закон). Ньютон не мог не видеть этого недостатка своей теории, но никаких данных, которые хотя бы отдаленно подсказывали, в каком направлении искать ответ, в то время не было. Hypotheses non fingo[17 - «Гипотез же я не измышляю» (пер. А. Н. Крылова) – знаменитые слова из «Общего поучения» в финале «Математических начал натуральной философии». – Прим. ред.].

*****

Уравнения движения. Закон природы «сила – это темп изменения количества движения» традиционно называется вторым законом Ньютона. Его еще часто называют уравнением движения или уравнениями движения. Вот как получается уравнение, например, для Марса. Солнце притягивает Марс с силой, которая зависит от расстояния между Марсом и Солнцем. Но оно-то и неизвестно, ведь задача как раз и состоит в том, чтобы узнать, как положение планеты зависит от времени. А как мы вообще применяем уравнения для решения задач? Мы делаем вид, что неизвестное нам известно, обозначаем его какой-нибудь буквой (например, но совершенно не обязательно, x) и стараемся переписать условие задачи, используя эту букву. В случае с Марсом мы поступаем точно так же, только буква кодирует не неизвестное нам число, а неизвестное нам поведение, т. е. функцию времени. (И таких букв/функций вообще-то три, когда движение происходит в трехмерном пространстве.) Условие задачи, которое надо использовать, чтобы составить уравнение, – это и есть второй закон Ньютона: мы совершаем с неизвестной функцией два разных действия, что дает две разные вещи, но их нужно приравнять. Во-первых, мы записываем выражение для силы; она зависит от расстояния, а потому и от искомого положения планеты по отношению к Солнцу. Во-вторых, мы берем темп изменения количества движения, в данном случае – темп изменения скорости планеты (умноженной на массу). Но сама скорость планеты – это темп изменения ее положения. Итак, мы выразили две разные величины через (пока неизвестное) положение планеты, изменяющееся со временем. Ньютон же говорит нам, что эти две разные величины равны друг другу. Все, что происходит в мире, происходит так, что они совпадают. Поэтому мы принимаемся за выяснение, как должно себя вести положение планеты в зависимости от времени, чтобы записанное равенство действительно было равенством. Это и выражают словами «решить уравнения движения».

Разумеется, не все стрелы летят по одной и той же параболе даже в отсутствие сопротивления воздуха, а планеты не сидят все на одной-единственной эллиптической орбите. Кроме собственно закона движения, важно и то, как я запустил стрелу (куда направил и с какой скоростью) и где именно находился и с какой скоростью двигался Марс, скажем, в 00:00:00 GMT 1 января 2000 г. Эти данные удачно называются начальными условиями. Они включают положения и скорости всего, что движется, в некоторый момент времени, который условно считается начальным. Решая уравнения движения для конкретных систем, мы каждый раз задаемся какими-то начальными условиями. Для разгоняющегося самолета это положение в начале полосы и нулевая скорость. Используя уравнения движения с учетом тяги, сопротивления воздуха в зависимости от скорости и подъемной силы в зависимости от скорости, мы можем определить, где и когда самолет оторвется от полосы.

Для сложных систем, как правило, ответ невозможно выразить в виде функции времени, записанной на бумаге обозримым образом. В таких случаях говорят, что «уравнения движения нельзя решить точно», но в этой фразе нет никакого глубокого философского смысла; это довольно технический момент, к тому же стимулирующий развитие как приближенных математических методов, так и компьютерных вычислений. Но для одинокой планеты, обращающейся вокруг звезды, по прекрасному математическому везению уравнения движения можно решить точно, и именно это Ньютон и проделал, с выдающимися последствиями.

Уравнения движения для одной планеты можно решить точно

*****

Больше чем Кеплер. Ко временам Ньютона законы Кеплера можно было воспринимать как экспериментальный факт, т. е. результат наблюдений. Привнесенные в эту историю Ньютоном математика и дополнительная догадка о том, как действует гравитация, воспроизвели эллипсы для планет. Три закона Кеплера перестали быть разрозненными высказываниями и приобрели логическую связь между собой: все три оказались следствиями закона движения и закона тяготения. Слово «следствие» здесь означает математическую неизбежность: если верны второй закон Ньютона и закон тяготения Ньютона, то никак по-другому планеты двигаться не могут[18 - Речь идет о системе «Солнце плюс одна планета»; про остальные планеты мы временно забываем. Эта задача на профессиональном жаргоне, кстати, называется задачей Кеплера.]. Точнее говоря, могут, но только не совсем планеты (которые одни только и входили в предмет вычислений Кеплера), а тела, прилетающие извне Солнечной системы и улетающие куда-то прочь из нее. Здесь произошло очередное маленькое чудо: с помощью логического анализа (математики) познание вышло за текущие пределы наблюдений. Математический вывод законов Кеплера в большой степени поддержал уверенность в том, что и догадки по поводу законов неплохи, и математика выбрана правильно. А затем та же математика стала для нас проводником, указывая на новые, ранее не наблюдавшиеся виды движения. Для тел вблизи Солнца их оказалось три (вместе с эллипсами), если не считать движения по прямой точно в направлении Солнца[19 - Его редко упоминают, видимо, ввиду его тривиальности с теоретической точки зрения; с практической же точки зрения направить корабль с околоземной орбиты по прямой к Солнцу намного труднее, чем за пределы Солнечной системы.]. И буква, и дух метода исследования мира по схеме «причина – следствие» говорят, что нет никакой возможности принять одни выводы и отказаться от других – неважно, что другие виды движения не наблюдались. Вот все виды движения под действием притяжения к центральному телу (рис. 1.5).

Рис. 1.5. Орбиты: эллипс, гипербола и парабола

Эллипсы. Во-первых (Кеплер был абсолютно прав!), эллипсы: математически точные эллипсы. Движение в разных частях эллипса происходит быстрее или медленнее точно так, как это утверждал Кеплер, вот только после Ньютона это утверждение перестало быть отдельным законом природы, а стало следствием закона движения и закона тяготения. Точно так же и третий закон Кеплера потерял самостоятельность.

Для Кеплера имеющиеся орбиты планет были уникальными. Для Ньютона, получившего контроль над тем, как эти эллипсы вырастают из законов и начальных условий, очевидно, что эллипсы могут быть очень разными: сильнее или слабее вытянутыми («совсем не вытянутый» эллипс – это попросту окружность). Математически тот или иной эллипс, по которому движется планета, определяется начальными условиями: тем, в каком направлении и с какой скоростью планета двигалась в выбранный «начальный» момент. Чтобы предсказать поведение реальных планет, надо взять эти начальные условия из наблюдений (определить скорость может оказаться сложнее, чем определить положение; но нужно и то и другое). Решение уравнений движения с такими начальными условиями дает в точности те траектории, которым реальные планеты и следуют, и мы уверенно предсказываем, что с ними будет в будущем[20 - А также и что было в прошлом: уравнения таковы, что их можно с равным успехом решать в обе стороны по времени, предсказывая будущее и описывая прошлое с одинаковой степенью надежности.]. Для воображаемой планеты начальные условия можно выбрать любыми, и эллипсы получатся самые разные: например, сильно вытянутые. Настоящие планеты в Солнечной системе таких вытянутых эллипсов не демонстрируют, но и здесь оказалось, что если математика показывает наличие решения определенного вида, то стоит поискать его в физическом мире. Кометы – это тела, которые движутся по сильно вытянутым орбитам (не каким-то, а именно эллипсам, пока они не портятся за счет прохождения вблизи массивных планет). При движении по вытянутому эллипсу тело проводит бо?льшую часть времени далеко от Солнца, где его не разглядеть, и лишь за короткое время и с высокой скоростью пролетает вблизи Солнца. Именно тогда комета становится видна с Земли (которая, не будем забывать, и сама достаточно близка к Солнцу – примерно в 10 раз ближе, чем Сатурн, самая дальняя из известных во времена Ньютона планет, и в 30 раз ближе, чем Нептун)[21 - Приближение к Солнцу делает комету заметной еще и потому – и даже в первую очередь потому, – что испаряемое с ее поверхности вещество образует хвост. При удалении от Солнца испарение прекращается и хвост исчезает, делая наблюдение кометы особенно трудной задачей.].

«Начала» Ньютона вышли в 1687 г., а в 1705-м его уравнения были использованы для предсказания, причем с размахом на полвека вперед: в 1758 г. будет наблюдаться комета. Эта комета сейчас называется 1P/Halley. В этом обозначении 1P указывает на ее порядковый номер (один!!) и ее «периодичность», а Halley – это в русской традиции Галлей, хотя точнее было бы Хэли или Холи. (Пример другой кометы: 67P/Churyumov – Gerasimenko; здесь пусть англоговорящие мучаются с тем, как произнести.) Галлей – современник Ньютона, сыгравший немалую роль в том, чтобы «Начала» вообще увидели свет, – не открыл свою комету, он «всего лишь» заявил, что кометы, наблюдавшиеся ранее, в частности в 1531, 1607 (при Кеплере!) и 1682 гг., – это одна и та же комета. Заявление не было произвольной догадкой, но подтверждалось результатами вычислений того, как большие планеты влияют на орбиты комет (как именно они портят те самые вытянутые эллипсы). На основе вычислений, пользуясь законами Ньютона, Галлей и предсказал следующее появление кометы в 1758 г. Сбывшееся предсказание означало бы, что в Солнечной системе есть по крайней мере одно тело, не являющееся планетой, которое обращается вокруг Солнца.

Галлей скончался за 16 лет до установленного им срока возвращения кометы и был лишен возможности переживать «в реальном времени», сбудется или не сбудется его предсказание, – а переживать было от чего. Указанный им 1758 год прошел без кометы, точнее, почти прошел: комета объявилась практически в последний момент, 25 декабря. Увидел ее 35-летний саксонский фермер и астроном-любитель Палич. Его жизненная стезя определялась унаследованными им обязанностями по ведению фермерского хозяйства, и в юности ему приходилось скрывать свою любовь к астрономии[22 - После себя Палич оставил три с половиной тысячи книг, часть из которых были переписанными от руки научными трудами, приобретение которых было ему не по карману.]. Вообще-то я не думаю, что Галлей хоть сколько-нибудь сомневался, что его комета вернется и будет возвращаться. После трех полных оборотов вслед за своим появлением в 1758–1759 гг. комета вернулась в 1986-м, но я упустил свою возможность ее увидеть. Она приблизилась к Солнцу, но оказалась по другую сторону от него, чем Земля, что создало худшие условия для ее наблюдения с Земли за последние 2000 лет. Надеюсь, многие из моих читателей используют свой шанс в 2061-м. Целый класс комет – с периодом обращения от 20 до 200 лет – называют кометами галлеевского типа; типичная такая комета появляется во внутренней области Солнечной системы один-два раза за одну человеческую жизнь.

1 января 1801 г. на небе обнаружилось неизвестное до того тело. Автор открытия (астроном Пьяцци, католический священник из Палермо) продолжал наблюдения до начала февраля, когда ему пришлось прервать их из-за болезни. К сентябрю, когда он опубликовал результаты своих наблюдений, новое небесное тело заняло на небе положение, близкое к Солнцу, из-за чего наблюдать его стало невозможно. Возможность наблюдений должна была вернуться в конце года, но для их возобновления требовалось с достаточной точностью знать, где новое тело к тому времени окажется. В его розыске принял участие 24-летний Гаусс (по мнению многих – величайший математик из всех когда-либо живших). Он разработал «быстрый алгоритм» восстановления орбиты по трем наблюдениям и с его помощью определил эллипс, на котором это тело должно было находиться. На основе его предсказаний потерянная планетка, названная Церерой, была успешно «возвращена» 31 декабря 1801 г.; едва ли какая-нибудь другая подобная история наблюдений укладывается точно в календарный год[23 - Пьяцци назвал открытое им тело Cerere Ferdinandea, почтив не только римскую богиню сицилийского происхождения, но и короля Неаполя Фердинанда IV, и короля Сицилии Фердинанда III (это одно и то же лицо). Королевская часть имени не прижилась (да и Фердинанд был в 1805 г. смещен Наполеоном и снова сделался королем, на этот раз Фердинандом I в Королевстве обеих Сицилий, лишь в 1816 г.). Сейчас мы относим Цереру – диаметр которой чуть меньше 1000 км – к классу карликовых планет. Они нам еще встретятся, но не на этой прогулке: все, кроме Цереры, пребывают намного дальше от Солнца – за орбитой Нептуна, так что до них еще надо добраться.]. Большая полуось эллипса, на котором пребывает Церера, – примерно 2,8 а.е. (астрономическая единица – среднее расстояние от Земли до Солнца, удобная мера длины в Солнечной системе); это между Марсом и Юпитером.

К решениям уравнений движения для планеты, притягиваемой Солнцем, следует относиться как к описанию всех возможных видов движения в такой системе. Несколько удивительно, что их так мало: кроме вышеупомянутых эллипсов, осталось только два.

Гиперболы. Если запускать тела из какой-нибудь суперпушки, находящейся на некотором расстоянии от Солнца, то при достаточно большой начальной скорости тело не попадет на замкнутую орбиту, а, «завернув» вокруг Солнца, улетит прочь. Решение уравнений движения говорит, что такое движение непременно происходит по математически точным кривым, которые называются гиперболами. Они родственны эллипсам, но, в отличие от замкнутого эллипса, гиперболы разомкнуты. Два конца гиперболы по мере удаления от ее «середины» делаются все больше похожими на прямые (что неплохо согласуется с нашим представлением о том, что, когда тело находится очень далеко от Солнца, солнечное притяжение почти не ощущается и тело летит почти по прямой). У гиперболы тоже есть фокус (специальная точка вне самой гиперболы); гиперболические траектории небесных тел таковы, что (как и в случае эллипса) Солнце сидит точно в фокусе. Движение по гиперболе, как говорят, «не финитно»: тело приходит откуда-то издалека, отклоняется Солнцем и, изменив направление, уходит куда-то в неопределенное далеко, причем скорость его, хотя и уменьшается по мере удаления, приближается к некоторому фиксированному значению, не равному нулю.

Предсказание гиперболических орбит (возможность которых Кеплер, очевидно, не мог и подозревать) – это демонстрация силы математических методов и самого подхода к познанию, основанного на причинах явлений. В течение трех сотен лет можно было не наблюдать в Солнечной системе ни одного тела, летящего по гиперболе, и тем не менее ни у кого не было сомнений, что такое возможно – что в Солнечную систему может залететь гость извне, побыть здесь недолго и распрощаться навсегда, с необходимостью следуя по какой-то гиперболе. Такой гость издалека был замечен 19 октября 2017 г. и вскоре наречен Оумуамуа (рис. 1.6). Сейчас этот астероид, когда-то, видимо, выброшенный из какой-то иной планетной системы, уже вычерчивает «уходящую» от нас часть гиперболы. 30 августа 2019 г. была открыта и межзвездная комета 2I/Borisov. Кроме того, пять рукотворных объектов сейчас движутся «вокруг» Солнца по гиперболам, это значит, что они покидают Солнечную систему. Это «Пионер-10» (запущен в 1972-м), «Пионер-11» (1973), «Вояджер-1», «Вояджер-2» (1977) и «Новые горизонты» (2006).

Рис. 1.6. Оумуамуа в видении художника

Параболы. Наконец, «между» эллипсом и гиперболой есть траектория еще одного типа. Она называется парабола. У нее тоже есть специальная точка, называемая фокусом, и несколько условно можно считать, что парабола – это «разомкнутый эллипс» (один из фокусов эллипса отодвинут неопределенно далеко, но по мере отодвигания эллипсу не давали стать слишком тонким). На первый же взгляд парабола больше похожа на гиперболу: у нее тоже уходят вдаль два конца, правда, «выпрямляются» они по мере удаления по другому закону, чем в случае гиперболы, да и улетающее тело движется по ним иначе: скорость движения делается все меньше и меньше, постепенно приближаясь к нулю.

Едва ли хоть одно тело вблизи какой-нибудь звезды летит по параболе, но причина не в нарушении соответствия между тем, что предсказывает математика, и тем, что может иметь место в реальности. Причина в сложности «тонких настроек». Если вы имеете в своем распоряжении космическую пушку, чтобы запускать тела в сторону Солнца, то, пока вы будете выстреливать тела с большой скоростью, Солнце не сможет оставить их в своей сфере влияния и траектории этих тел станут гиперболами. Если же вы понизите скорость выстреливания, то притяжения Солнца хватит на то, чтобы удержать тело при себе, а это значит, что траектория окажется эллипсом. При заданном расстоянии от Солнца лишь единственное значение скорости приведет к тому, что тело полетит по параболе. Стоит выстрелить чуть или сколь угодно быстрее – получатся гиперболы, а чуть или сильно медленнее – эллипсы. В этом смысле гипербол и эллипсов «много», а парабол «мало». В реальности параболы в качестве орбит не запрещены, а просто не случаются.

Вот, собственно, и все, что может произойти: эллипсы, гиперболы или в крайнем случае параболы. Никаких более замысловатых траекторий, если речь идет о движении под действием притяжения к одному центру. Никаких, например, вариантов «по спирали падает на Солнце» – что не может не радовать обитателей одной из планет, обращающихся вокруг Солнца.

Кеплер абсолютно правильно прочитал многостраничные таблицы с числами, но нечеловеческие усилия и озарение, необходимые для такого прочтения, оказались больше никому не нужны: знание о том, какими могут быть орбиты, стало доступным и первокурснику. «Особенно замечательным, – писал Эйнштейн в статье, посвященной 200-летию кончины Ньютона, – должно было казаться выяснение того факта, что причина движения небесных тел тождественна столь привычной нам из повседневной жизни силе тяжести»[24 - Пер. А. М. Френка.]. И это не все. Принципы, один раз успешно выведенные из наблюдений (исторически – в ограниченной части Солнечной системы), наделили нас способностью делать выводы об устройстве мира и предсказывать поведение его частей далеко за пределами Солнечной системы. Мир Ньютона, полностью поглотивший мир Кеплера (и впитавший в себя относительность Галилея), постепенно распространялся на все шире приоткрывавшуюся Вселенную, не требуя для этого никаких изменений в своих фундаментальных положениях. Солнечная система отлично поддерживала единство теории и наблюдений: например, солнечные и лунные затмения известны на любой «мыслимый» момент времени в будущем или прошлом, и эти предсказания выполняются много точнее, чем расписание пригородных поездов. Простые принципы, заложенные в описание мира, работали, работали и работали; новые принципы не требовались. А если все, что происходит, случается в соответствии с законами движения, то все ли предсказуемо? Если знать положения и скорости всех тел в некоторый момент времени (упоминавшиеся уже начальные условия), то можно ли узнать будущее, просто решая уравнения движения? И вообще, в космосе все правда так просто? И есть ли границы, за которыми сформулированные законы теряют применимость?

Источник развития знания – несоответствия в имеющемся знании. Мощь ньютоновской картины мира, основанной на законах движения, определялась в том числе тем, что границы ее стали появляться в поле зрения не раньше чем через полтора столетия чрезвычайно плодотворного ее развития. Мы доберемся до этих границ гораздо быстрее, но еще до того нас ждут несколько шедевров ее использования, как в рукотворных ситуациях, когда требуется управлять движением ради достижения практических целей, так и для понимания устройства мира самого по себе.

Все книги на сайте предоставены для ознакомления и защищены авторским правом