Жак Поль "Вселенная с нуля. От Большого взрыва до абсолютной пустоты"

grade 5,0 - Рейтинг книги по мнению 10+ читателей Рунета

None

date_range Год издания :

foundation Издательство :Эксмо

person Автор :

workspaces ISBN :978-5-04-177655-8

child_care Возрастное ограничение : 999

update Дата обновления : 14.06.2023

? СМ. ТАКЖЕ

Образование гелия (3 минуты после начала расширения)

Вселенная становится прозрачной (380 тысяч лет после начала расширения)

Начало расширения

Почему наше небо ночью черное?

Парадокс Ольберса: «B бесконечной однородной в пространстве и времени Вселенной всякий луч зрения должен упираться в звезду – так почему же наше небо ночью черное?»

Астрономы Возрождения, опровергнув аристотелеву модель сферы, на которой «неподвижно закреплены» звезды, предположили, что светила находятся в гораздо более внушительном, практически бесконечном пространстве, и немедленно столкнулись с парадоксом, который преследовал их еще несколько веков. И в самом деле, если считать, что количество звезд бесконечно, то взгляд, куда ни посмотри, должен был бы упираться в светящуюся точку. И небесный свод должен был бы излучать ослепительный свет, такой же яркий, как звездная поверхность, как поверхность Солнца! А ночное небо практически черное…

Одним из первых этот парадокс сформулировал знаменитый астроном из Вюртемберга Иоганн Кеплер. И он воспользовался им как аргументом для опровержения идеи бесконечности Вселенной, которую незадолго до этого доказывал итальянский монах-доминиканец Джордано Бруно, утверждавший, что Вселенная не имеет ни центра, ни окружности. В XVIII веке, когда научный мир вовсю рассуждал о бесконечности, швейцарский математик Жан-Филипп Луи де Шезо провел первый серьезный анализ свойств Вселенной, в которой могло бы светиться бесконечное количество звезд. В 1826 году немецкий врач Генрих Ольберс вновь сформулировал эту проблему в более доступной форме, опираясь на понятие «луча зрения». Он пришел к тому же парадоксальному вопросу: почему ночью небо черное?

В бесконечном космосе, где звезды светят вечно, любой взгляд, материализованный на фото в виде лазерного луча, испускаемого из башни телескопа VLT в Чили, должен был бы непременно упереться в звезду

Два десятилетия спустя американский писатель и поэт Эдгар По, крупная фигура американского романтизма, написал «Эврику»[1 - СПб.: Вита-Нова, 2016. (Здесь и далее прим. ред.)], большую поэму в прозе, в которой он изложил основы космологических концепций. Именно в этом произведении, опубликованном в 1848 году, По дал первое правдоподобное решение парадокса Ольберса, предположив, что у Вселенной существует конечный возраст. Ведь свет распространяется с конечной скоростью – это было установлено еще в 1676 году. По также показал, что, если бы даже размеры Вселенной и были бесконечны, с Земли можно было бы наблюдать лишь конечное число звезд. И это количество наблюдаемых звезд столь невелико, что вероятность попадания случайного луча зрения с Земли на звезду довольно мала.

Теория Большого взрыва также предполагает, что Вселенная началась в определенный, конечный момент в прошлом, и таким образом дает аналогичное решение парадокса Ольберса. Более того, из нее можно сделать заключение о существовании когда-то довольно неожиданного феномена: поскольку Вселенная расширялась из очень горячего состояния, то упомянутое выше реликтовое излучение, которое в наше время скромно спряталось в миллиметровый диапазон длин волн, в эпоху рекомбинации, то есть тринадцать миллиарда восемьсот миллионов лет назад, было в тысячу миллиарда раз интенсивнее. Тогда все небо сияло как одно огромное Солнце.

? СМ. ТАКЖЕ

Большой взрыв (Начало расширения)

Начало расширения

Квантовая гравитация

Физические параметры первых мгновений существования Вселенной столь экстремальны, что для их описания нужно по идее объединить две доселе остающиеся несовместимыми теории – общую теорию относительности и квантовую механику.

Все события, происходящие во Вселенной, протекают посредством взаимодействий, относящихся к «фундаментальным», то есть таким, которые нельзя разложить на более базовые взаимодействия. И каждое проявляется в виде сил, тоже именуемых «фундаментальными». Перечисляя в алфавитном порядке, можно назвать следующие виды взаимодействий: гравитационное, сильное, слабое и электромагнитное. Если же попытаться ранжировать их по относительной интенсивности, то можно увидеть среди фундаментальных взаимодействий крайнее разнообразие: на шкале интенсивности, в которой гравитация равна 1, слабое взаимодействие будет иметь масштаб 10

(число записывается в виде единицы с двадцатью пятью нулями), электромагнетизм – 10

, а сильное взаимодействие – и вовсе 10

!

Физики представляют фундаментальные взаимодействия в виде обмена частицами, играющими роли «посланников»; например, в электромагнитном взаимодействии такими посланниками служат фотоны. Хорошо нам знакомые гравитационное и электромагнитное взаимодействия работают на больших расстояниях. Посланниками для них служат частицы с нулевой массой и нулевым зарядом. Сильное и слабое взаимодействия работают на очень небольших расстояниях, ограниченных размерами атомных ядер. Их посланники обладают массой и даже зарядом. Гравитация – настолько слабое взаимодействие, что оно не действует на уровне частиц; для нее необходимы гораздо более внушительные массы.

Поэтому совершенно не удивительно, что теория гравитации, которой, по сути, является общая теория относительности, одна из самых успешных физических теорий, описывает мир огромных объектов – планет, звезд и галактик. И наоборот, когда речь идет о бесконечно малых масштабах, приходится использовать квантовую механику, которая описывает три фундаментальных взаимодействия атомного и субатомного уровня.

Физики из самых известных лабораторий нашей планеты сегодня чувствуют себя весьма неуютно, когда речь заходит о разработке теории, способной описать первые моменты существования Вселенной, когда объединились две бесконечности и четыре вида взаимодействий. Примирить двух враждующих сестер, общую теорию относительности и квантовую механику, чрезвычайно трудно. Попыток было немало, о чем свидетельствует пышный букет теорий, разработанных исследователями, пытавшимися провести «Великое объединение»: супергравитация, теория суперструн, петлевая квантовая гравитация…

Однако создание теории квантовой гравитации, которая позволила бы прийти к такому консенсус, натыкается на серьезное препятствие: ее масштабы энергий и расстояний все еще слабо доступны для технологических методов, которые есть в распоряжении у экспериментаторов. Подобную теорию пока невозможно проверить!

? СМ. ТАКЖЕ

Планковская эпоха (5 · 10

секунд после начала расширения)

5 · 10

секунд после начала расширения

Планковская эпоха

Плотность и температура в этой фазе существования Вселенной были столь высоки, что теория относительности просто не действовала – ее место занимала теория квантовой гравитации, которая до сих пор окончательно не сформулирована и продолжает изучаться.

В 1899 году немецкий физик-теоретик Макс Планк выступил в Академии наук Пруссии с докладом, в котором предложил собственную систему единиц измерения, созданную на основе одних только фундаментальных физических констант. Для построения этой системы «естественных» единиц Планк использовал гравитационную постоянную, скорость света в вакууме (которая позже сыграет ключевую роль в теории относительности Эйнштейна) и константу, которая впоследствии будет названа в его честь и станет одной из основ теории квантовой гравитации – постоянную Планка. Исходя из этих базовых постоянных, значение каждой из которых было принято равным единице, удалось, к примеру, получить значение единицы времени. Планковское время, обозначаемое tP, оказалось равным примерно 5 · 10

секунд. Это самая маленькая мера времени, обладающая физическим смыслом.

В честь великого немецкого физика космологи назвали сверх период, наступивший сразу после Большого взрыва, планковской эпохой – ее продолжительность имеет тот же порядок, что и планковское время. В отсутствие законченной теории квантовой гравитации описать физические законы, действовавшие в этот период невозможно, так же как и определить его точную продолжительность. Ясно только, что в этот период, который был не длиннее планковского времени, не существовало самих понятий времени и пространства. Пока ученые ограничиваются упоминанием «квантовой пены», первичного тумана, в котором четыре главных природных силы были объединены в некое фундаментальное взаимодействие.

Отсутствие физического языка для описания этого состояния материи создает барьер (планковскую стену), который не позволяет исследовать первые мгновения существования Вселенной. Тем не менее космологи, похоже, вот-вот получат в свое распоряжение вероятное свидетельство, которое сможет помочь им преодолеть эту стену: эхо гравитационных волн. Астрофизики стремятся обнаружить его следы в реликтовом излучении. В 2014 году группа американских исследователей опубликовала в знаменитом журнале Nature результаты наблюдений реликтового излучения по программе BICEP2 (Background Imaging of Cosmic Extragalactic Polarization). В полученных данных, казалось, обнаружились следы, оставленные первичными гравитационными волнами в реликтовом излучении. Вскоре, однако, измерения, выполненные европейским космическим зондом «Планк», показали, что это были всего лишь следы межзвездной пыли. К концу 2030-х годов планируется запуск специальной космической обсерватории, чтобы обнаружить первичные гравитационные волны, собрать информацию о планковской эпохе и первых мгновениях развития Вселенной.

? СМ. ТАКЖЕ

Квантовая гравитация (Начало расширения)

Вселенная становится прозрачной (380 тысяч лет после начала расширения)

Регистрация гравитационных волн (2016)

Регистрация гравитационных волн в космосе (2035)

10

секунд после начала расширения

Инфляция

Вероятно, именно благодаря фазе ускоренного расширения Вселенная обрела достаточно внушительные размеры, а наблюдаемая ее часть стала удивительно однородной, изотропной и плоской.

Всматриваясь в небо со всех возможных точек, астрономы убедились, что наблюдаемая ими Вселенная не только однородная и изотропная, но также пространственно-плоская. Однородность Вселенной означает, что на больших масштабах плотность материи в ней всюду примерно одинакова. Изотропность предполагает, что, аналогично, на очень больших масштабах структура наблюдаемой Вселенной повсюду идентична, каким бы ни было направление луча зрения. Другими словами, у Вселенной нет центра. А выражение «плоская Вселенная» значит, что на любых масштабах сумма углов треугольника равна ста восьмидесяти градусам – будь Вселенная, к примеру, сферической, это было бы не так. Наблюдения того же реликтового излучения, называемого еще «космическим микроволновым фоном», которые недавно были выполнены европейским космическим зондом «Планк», подтвердили все три характеристики.

Однако, чтобы эти выводы согласовывались с теорией Большого взрыва, следует допустить, что сразу после планковской эпохи за ничтожно малую долю секунды размер Вселенной с огромной скоростью увеличился в невероятно огромное количество раз: 10

(единица с пятьюдесятью нулями!). В результате этого мощного раздувания – инфляции – микроскопический объем однородной первичной Вселенной увеличился до огромных размеров, гораздо больших, чем те, в которых мы способны наблюдать ее сейчас. И она не стала при этом менее однородной. Космическая инфляция определила и плоский характер Вселенной, напоминающей надуваемый воздушный шар. Вначале такой шар имеет вполне явную кривизну, но чем больше он раздувается, достигая, к примеру, размеров нашей планеты, тем существеннее сглаживается кривизна, почти исчезая под конец. Ведь и Земля нам кажется плоской, когда мы на ней стоим?

Растягивание пространства до гигантских масштабов удаляет из него все следы кривизны; кроме того, это потрясающее раздувание вымывает из него и все признаки анизотропии. Вдобавок во время фазы инфляции крошечные квантовые флуктуации, действовавшие в микроскопических исходных объемах, тоже приобретают космические масштабы. Запечатлевшись навсегда в реликтовом фоновом излучении, эти флуктуации несли в себе зародыши будущих гигантских структур мироздания. Для подобных результатов необходимо, чтобы первичная Вселенная находилась под действием некоего ускоряющего фактора – чего-то вроде «темной энергии», ответственной за обнаруженное космологами в конце ХХ века ускорение расширения Вселенной. Эта ускоряющая сущность, обладающая огромной плотностью энергии, должна была распасться на частицы, ознаменовав таким образом конец стадии инфляции и рождение материи.

? СМ. ТАКЖЕ

Большой взрыв (Начало расширения)

Планковская эпоха (5 · 10

секунд после начала расширения)

Вселенная становится прозрачной (380 тысяч лет после начала расширения)

Образование крупных структур (13,7 миллиарда лет назад)

Расширение Вселенной ускоряется (4,8 миллиарда лет назад)

10

секунд после начала расширения

Возникновение материи

Из квантового вакуума возникла материя, состоящая из частиц, в том числе и из частиц темной материи, – эти процессы могут быть воспроизведены на крупнейших ускорителях нашей планеты.

До окончания инфляции пространство остается пустым, в квантовом смысле этого термина. Тем не менее его постоянно бороздят группы виртуальных частиц, возникающих из небытия, чтобы немедленно туда же и вернуться. Огромное количество энергии, выброшенное в пространство к концу эпохи инфляции, используется виртуальными частицами для выхода в реальный мир – вместе с античастицами. Все эти частицы вовлекаются в безумную пляску, в которой за всяким актом материализации тут же следует обратный процесс аннигиляции.

Среди частиц, возникающих в вакууме, присутствуют и частицы знакомой нам материи, те, из которых созданы звезды и люди и которые прекрасно описываются стандартной моделью физики частиц. Стандартная модель позволила сделать огромный шаг в количественном понимании бесконечно малого, однако для объяснения многих феноменов Вселенной физикам необходима и другая форма материи, которую они назвали темной.

В основном эта темная материя вступает в гравитационные взаимодействия, играя роль дополнительного невидимого, но преобладающего элемента, смешанного с нашим чисто атомным миром, и служащего связующим и стабилизирующим звеном для крупных структур. Несомненно, было бы более уместным назвать эту материю «невидимой» либо «прозрачной»…

Темная материя, чтобы сыграть все назначенные ей физиками роли, должна по идее состоять из массивных частиц, нечувствительных к воздействию электромагнетизма (иначе темная материя не была бы невидимой) и сильного взаимодействия (иначе частицы темной материи перегрузили бы ядра атомов).

Ни одна из частиц стандартной модели не соответствует этим условиям. Таким образом, физикам пришлось обратиться к гипотетическим частицам, которые получили нежное имя WIMP (от англ. Weakly Interacting Massive Particles – слабовзаимодействующие массивные частицы). Физики полагают, что наилучшим кандидатом на звание вимпа может стать нейтралино – нейтральная, массивная и стабильная частица, чье существование предсказано теорией суперсимметрии, согласно которой каждой частице стандартной модели соответствует гораздо более массивный аналог. Физики, занимающиеся исследованием микрочастиц на Большом адронном коллайдере LHC (Large Hadron Collider), где происходят самые мощные столкновения частиц в мире, уже показали верность этого предположения, открыв бозон Хиггса, краеугольный камень стандартной модели. И они по-прежнему надеются исследовать темную материю, создав ее искусственно, но пока это не получается. Природа темной материи – одна из редких загадок физики, которая не поддается решению уже более трех четвертей века…

? СМ. ТАКЖЕ

Инфляция (10

секунд после начала расширения)

Материя побеждает антиматерию (10

секунд после начала расширения)

Похожие книги


Все книги на сайте предоставены для ознакомления и защищены авторским правом