Штефан Кёльш "Good Vibrations. Музыка, которая исцеляет"

Эта книга рассказывает о влиянии музыки на физическое и ментальное здоровье человека. Профессор Кёльш утверждает, что музыка лежит в основе человеческой сущности и что музыкальность присуща каждому человеку. Опираясь на новейшие научные исследования, автор рассказывает о влиянии музыки на гормональную, иммунную, вегетативную нервную систему; о том, что происходит в мозге при прослушивании музыки; о влиянии музыки на состояние здоровья и о ее способности лечить болезни и бороться с зависимостями. Вы найдете здесь много практических советов, упражнений и даже списки для прослушивания. Не обязательно читать всю книгу целиком. Вы можете прочесть только нужный вам раздел или знакомиться с частями в любой последовательности. Для всех, кто любит музыку и желает укрепить здоровье.

date_range Год издания :

foundation Издательство :Попурри

person Автор :

workspaces ISBN :978-985-15-4339-4

child_care Возрастное ограничение : 0

update Дата обновления : 14.06.2023

linkyou

• Пение нравится маленьким детям не только из-за приятного звучания, но и из-за его понятной структуры. Поэтому, не ограничиваясь музыкой, постарайтесь, чтобы режим дня ребенка имел четкий ритм, в котором ясно обозначено время для сна, еды, игр и пения. В этом случае день приобретает структуру, и у ребенка развивается биологический жизненный ритм (который, разумеется, должен соответствовать его потребностям и меняться по ходу развития).

Homo sapiens от природы обладает глубоким чувством ритма. Это заметно в том числе и по тому, что люди отдают предпочтение ритмически организованной информации перед неструктурированной. Они непроизвольно придают ритм и такт случайным звуковым последовательностям. Андреа Равиньяни в ходе одного эксперимента предложил группе людей имитировать удары по барабану, хаотично и случайным образом производимые компьютером[13 - Ravignani, A., Delgado, T., & Kirby, S. (2017): Musical evolution in the lab exhibits rhythmic universals, Nature Human Behaviour, 1 (1), 0007.]. Запись демонстрировалась следующим участникам, которые также должны были имитировать последовательность ударов. Этот цикл повторялся много раз. Таким образом, первый участник имитировал случайные удары, второй – то, что получилось у первого, третий – то, что получилось у второго, и т. д. При этом каждый последующий участник непроизвольно делал последовательность звуков немного ритмичнее, чем она была на самом деле. После нескольких повторений из первоначальных хаотичных ударов получались ритмичные музыкальные последовательности звуков. Пройдя через несколько «поколений» участников, случайные удары по барабану превращались в ударный бит.

Удивительным образом эти биты приобретали музыкальные черты, типичные для универсальных ритмов, которые наблюдаются в музыке по всему земному шару. Сначала в последовательностях ударов появлялся такт. При этом удары делились либо на две доли (как в марше), либо на три (как в вальсе). Затем получившиеся такты делились на последовательности ударов разной длительности, которых в целом насчитывалось едва ли больше пяти (четвертные, восьмые, восьмые с точкой и т. д.). В конечном счете на основе этих организационных принципов возникали ритмические фигуры, биты и риффы для песен. Поэтому последовательности барабанных ударов так хорошо усваивались – ведь они подсознательно были структурированы таким образом, что наилучшим образом совмещаться с запоминающими способностями людей. Универсальные черты музыкального ритма заложены в когнитивных и биологических свойствах человеческого мозга и организма.

Многие животные также общаются посредством акустических сигналов, т. е. звуками. В отличие от природных (дождь, потрескивание огня, плеск волн, ветер), производимые животными звуки имеют структуру и поэтому часто напоминают музыку: пение птиц, китов или гиббонов, синхронное стрекотание цикад, похожие на барабанную дробь удары человекообразных обезьян по деревьям или собственному телу. Однако ни один биологический вид не способен вместе петь мелодии или гибко задавать и поддерживать такт в группе себе подобных. Даже эксперименты, в которых демонстрируются животные, синхронно движущиеся в такт, имеют либо сомнительную научную подоплеку и не могут быть повторены, либо основываются на дрессуре и поэтому не наблюдаются в дикой природе. Например, в известном видеоролике из YouTube, где какаду движет головой в такт музыке Backstreet Boys, мы не видим хозяйку птицы, которая за камерой с энтузиазмом жестами показывает ей, как надо двигаться…

То, что не дано ни одному животному, люди способны делать уже спустя несколько месяцев после рождения. В ходе исследования, проведенного Марселем Центнером и Туомасом Ээролой, детям в возрасте от пяти до десяти месяцев давали послушать бравурную классическую музыку наподобие финала из Karneval der Tiere («Карнавал животных») Сен-Санса[14 - Zentner, M., & Eerola, T. (2010): Rhythmic engagement with music in infancy, Proceedings of the National Academy of Sciences, 107 (13), S. 5768–5773.]. В ходе прослушивания они начинали болтать ногами в такт музыке – и это очень примечательно, поскольку доказывает врожденную склонность человека принимать участие в музыкальных событиях. Кроме того, дети улыбались, когда им удавалось синхронизировать свои движения с музыкой. Значит, участие в музыкальных событиях доставляет нам, людям, удовольствие. Участвовавшие в эксперименте дети родом из Финляндии и Швейцарии. Впоследствии был проведен еще один опыт с детьми из Бразилии, который дал схожие результаты за исключением того, что бразильские младенцы совершали под ту же музыку значительно больше движений (похоже, разминались перед предстоящим карнавалом)[15 - Ilari, B. (2015): Rhythmic engagement with music in early childhood: A replication and extension, Journal of Research in Music Education, 62 (4), S. 332–343.]. Эти исследования показывают, что музыка стимулирует в нас общую для всех функцию – желание синхронно двигаться в такт. Социальный эффект этой функции выражается в общественном поведении и кооперации. Если детям в четырнадцать месяцев дают возможность попрыгать в такт музыке, они проявляют бо?льшую готовность помогать окружающим (например, поднять ручку, которую экспериментатор «нечаянно» уронил), чем если просто прыгают, не подчиняясь никакому ритму[16 - Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014): Interpersonal synchrony increases prosocial behavior in infants, Developmental Science, 17(6), S. 1003–1011.]. Нечто похожее наблюдалось и в эксперименте Себастьяна Киршнера и Майкла Томаселло: когда четырехлетние дети вместе занимались музыкой, им после этого было легче сотрудничать, и они охотнее помогали друг другу[17 - Кirschner, S., & Tomasello, M. (2010): Joint music making promotes prosocial behavior in 4-year-old children, Evolution and Human Behavior, 31(5), S. 354–364.]. Таким образом, даже маленькие дети демонстрируют важную с эволюционной точки зрения функцию музыки, проявляя бо?льшую готовность к сотрудничеству и взаимопомощи.

Истоки человеческой музыкальности кроются в истории эволюции млекопитающих, насчитывающей десятки миллионов лет. Однако настоящая музыка с ритмом и звукорядом, исполняемая в группе голосом или с помощью инструментов, свойственна только человеку. Я полагаю, что способность синхронизировать ритмичные движения в группе – это простейшая ментальная функция, которая отличает человека как биологический вид от животных. Это значит, что музыка была важным эволюционным шагом в истории homo sapiens, а может быть, и всего рода homo. Именно этот шаг предоставил людям преимущества, которыми каждый из нас может воспользоваться и сегодня, слушая гармоничные мелодии и ритмы.

Врожденное музыкальное чутье: музыкальностью обладают даже люди, далекие от музыки

Когда в тишине концертного зала раздаются начальные такты музыки, в мозге происходит нейронный «Большой взрыв», имеющий феноменальные последствия. Наш мозг содержит около 86 миллиардов нервных клеток. Из них примерно 16 миллиардов расположено в коре. Это больше, чем у любого другого живого существа[18 - Herculano-Houzel, S. (2009): The human brain in numbers: a linearly scaled-up primate brain, Frontiers in Human Neuroscience, 3, S. 31.]. Каждая из нервных клеток соединена в среднем с тысячей других, что дает в итоге триллионы соединений (для сравнения: Млечный Путь насчитывает всего пару сотен миллиардов звезд). Вызванный звуками «Большой взрыв» заключается в том, что уже через несколько мгновений миллионы нейронов активно задействуют миллиарды связей в сетевых структурах мозга, которые отвечают за восприятие, внимание, память, интеллект, сенсомоторику, эмоции и коммуникацию.

«Большой взрыв» начинается с активации нервных клеток, которые воспринимают направление, силу, высоту и тембр нот. Затем следует узнавание гармонии, инструментов и последовательностей звуков. Эти процессы происходят в слуховом центре (в стволе мозга, таламусе и слуховой коре). Кроме того, активизируются различные участки памяти, начиная с сенсорной ультракороткой, которая запоминает звуки лишь на несколько мгновений и сравнивает их, чтобы усвоить ритм и такт музыки и понять направление мелодии – вверх или вниз. Для того чтобы сопоставить конец музыкальной фразы с ее началом, нам дополнительно потребуется рабочая память (которую называют также кратковременной). Если музыка нам знакома, подключается долговременная память, а если нас связывает с этим произведением какое-то личное воспоминание, то автоматически в игру вступает автобиографическая. Мы перерабатываем в мозге музыку, руководствуясь знанием о правилах, даже если мы никак не связаны с музыкой и не предполагаем у себя наличия таких знаний. Кроме того, мы испытываем эмоциональные реакции, и при этом у нас меняется частота сердцебиения и дыхания, мурашки бегут по телу.

Музыкантам на сцене для игры на инструментах дополнительно требуется сенсомоторный аппарат мозга. Кроме того, они читают ноты и следят друг за другом, чтобы координировать свои движения и вступать одновременно. Наконец, и музыканты, и публика обращают внимание на саму мелодию. Эти процессы затрагивают практически весь мозг – музыка способна повлиять на активность любой структуры мозга.

Когда меня во время учебы в университете в середине 1990-х годов заинтересовал вопрос, каким образом мозгу удается справляться со всеми этими задачами, мы еще почти ничего не знали о том, как мозг перерабатывает музыку. Поэтому я сначала занялся исследованиями, что происходит в мозге, когда мы ее просто слушаем. Первым делом меня заинтересовало, что происходит, когда мы слышим «правильные» и «неправильные» с точки зрения музыкальных правил аккорды. Этот метод был похож на тот, с помощью которого исследуется активность мозга при обработке звуков речи. Такие эксперименты проводили в то время Томас Гунтер и Ангела Фридерици в Институте когнитивной неврологии имени Макса Планка в Лейпциге, с которыми я планировал свои первые совместные исследования. В экспериментах с речью, в частности, сравнивалась реакция мозга при встрече с правильными и неправильными словами в таких, например, фразах, как «Он видит холодное пиво» и «Он видит холодную пиву». Каждый, кто знает язык, без труда обнаружит ошибку, причем даже тогда, когда сам не может объяснить, почему то или иное предложение правильно или неправильно с грамматической точки зрения. То же самое происходит и с музыкой, которая нам хорошо знакома, например мажорной и минорной, если мы выросли в стране, где такие мелодии часто слушают и исполняют. Здесь мы тоже воспринимаем на слух правильность или неправильность последовательности нот или аккордов независимо от того, способны ли мы объяснить, почему нам так кажется. (На самом деле последовательность музыкальных звуков не может быть «правильной» или «неправильной». Скорее надо говорить о том, насколько она привычна и ожидаема. Ведь необычные гармонические ходы у Баха, Моцарта или Бетховена не неправильны, а зачастую гениально непредсказуемы. Но ради простоты я все же употребляю здесь такие термины, как «правильно» и «неправильно»).

Чтобы выяснить, как мозг обрабатывает последовательности аккордов, я сознательно включал «ошибки» в музыкальную грамматику. Для этого я сочинил несколько последовательностей, каждая из которых состояла из пяти аккордов. Они проигрывались с помощью компьютера на синтезаторе. Первая половина этих последовательностей состояла из нормальных каденций (например, тоника – тоника параллельной тональности – субдоминанта – доминанта – тоника). Во второй половине один из аккордов заменялся на чужеродный, принадлежащий к другой тональности. Практически каждый мог определить, что такие аккорды звучат фальшиво, особенно если они помещались в конец последовательности.

Заглянем в лабораторию: измерение электрических реакций мозга на аккорды

Чтобы понять, как мозг обрабатывает аккорды, мы сначала использовали электроэнцефалографию (ЭЭГ). На голову испытуемому надели шапочку со встроенными электродами (обычно их 32 или 64). Она похожа на шапочку для купания, от которой отходит множество длинных проводов. С помощью электродов измеряли электрические сигналы мозга. Если шапочка надета правильно, все электроды занимают на голове нужную позицию. Испытуемого помещали в электрически изолированную кабину с удобным креслом, экраном, клавиатурой и громкоговорителем. Ему рассказывали, что он будет слушать последовательности из нескольких аккордов и что один из них, возможно, будет сыгран не так, как другие. В этом случае его задача заключается в том, чтобы сразу нажать клавишу. Дверь кабины закрывали и включали запись ЭЭГ – эксперимент начинался. Испытуемый слышал десятки последовательностей аккордов на протяжении 10–15 минут.

В ходе записи поначалу невозможно определить на основании появляющихся на мониторе кривых, как мозг обрабатывает музыкальную информацию. Волны ЭЭГ содержат много шумов, источником которых являются мышцы головы и шеи, а также, разумеется, спонтанная деятельность мозга, которая не имеет ничего общего с экспериментом (ведь он занят попутно и другими делами). По сравнению с этими шумами сигналы мозга, имеющие отношение к обработке музыкальной информации, можно сравнить с жужжанием пчелы на фоне шума от оживленной автомагистрали. Поэтому правильные и неправильные последовательности аккордов проигрывались десятки раз, а в измерениях участвуют от 15 до 25 испытуемых. Только так можно отделить электрический сигнал мозга, реагирующего на аккорд, от случайного шума. Эта реакция носит название «электрический потенциал мозга». Меня в ходе исследования интересовали прежде всего электрические потенциалы при обнаружении неправильного аккорда. Они имели заметные отличия от реакции на правильные. Эксперимент удался, что позволило нам приступить к обработке «музыкальной грамматики».

Именно тогда я обнаружил, что различия в электрической реакции мозга на правильные и неправильные аккорды обнаруживались уже спустя 150 миллисекунд (150 тысячных долей секунды) после начала звучания – за это время даже моргнуть не успеешь[19 - Koelsch, S., Gunter, T., Friederici, A. D., & Schr?ger, E. (2000): Brain indices of music processing: ›nonmusicians‹ are musical, Journal of Cognitive Neuroscience, 12 (3), S. 520–541.]! Электрический потенциал мозга при обнаружении неправильного аккорда был очень схож с типичной электрической реакцией мозга на синтаксическую ошибку в тексте. Он длился примерно столько же по времени и подобным образом распространялся по мозгу. Это были первые признаки того, что музыка и речь обрабатываются в схожих сетевых структурах мозга. Единственное отличие состояло в том, что электрическая реакция на необычные аккорды чуть больше захватывала правое полушарие мозга, а на синтаксические ошибки – левое.

Мы проводили этот эксперимент как с музыкантами, так и с людьми, далекими от музыки, которые не играли ни на одном инструменте и не пели в хоре. Результаты однозначно свидетельствовали о том, что мозг «немузыканта» реагирует на неправильные аккорды. Электрические потенциалы этой группы почти не отличались от тех, что демонстрировали музыканты. Они лишь были чуть слабее. Это свидетельствовало о том, что и у музыкантов, и у тех, кто не занимается музыкой, необычные аккорды обрабатываются одними и теми же механизмами мозга.

Интересно, что электрическая реакция мозга на неправильные аккорды наблюдалась даже у людей, которые сами о себе говорили, что абсолютно ничего не смыслят в музыке. Это лишний раз доказывает: мы зачастую сами не догадываемся о том, что нам известно. Специалисты говорят в таких случаях об «имплицитном знании». Оказывается, мы на удивление хорошо разбираемся во многих вещах, сами того не подозревая. Поэтому многие из испытуемых искренне удивлялись тому, как сильно их мозг реагировал на неправильные аккорды даже в тех случаях, когда сами они не замечали ничего необычного. Я помню, как один из моих друзей, которому я после эксперимента показал записи электрической активности его мозга, спросил меня: «Значит, я не такой уж немузыкальный?». Он также поинтересовался, сможет ли он освоить какой-нибудь музыкальный инструмент, т. к. всегда мечтал играть на саксофоне. На оба вопроса я дал ему утвердительный ответ. Спустя некоторое время я увидел его на одном из университетских концертов с саксофоном на сцене. Ему это доставляло очевидную радость, а для меня стало незабываемым моментом.

Таким образом мы доказали, что даже те, кто считает себя абсолютно немузыкальными людьми, обладают специфическим чутьем. Мы можем обладать какими-то способностями, даже не догадываясь об этом. Многие считают себя немузыкальными, поскольку не учились музыке, не знают нот, не играют ни на каком инструменте или никогда не учились пению (Улисс Грант, 18-й президент США, якобы сказал однажды: «Я знаю только две мелодии. Одна – это Yankee Doodle («Янки Дудл»), а вторая – нет»). Отсутствие музыкального образования отнюдь не свидетельствует о немузыкальности. Каждый человек музыкален, потому что от природы обладает способностью чувствовать музыку. Другими словами, все мы музыкальные существа. Поэтому каждый человек может извлечь для себя пользу из целительных эффектов мелодий.

Результаты тех экспериментов были затем повторены учеными из других стран. Моя исследовательская группа, как, впрочем, и другие, обнаружила впоследствии, что мозг реагирует на неправильные аккорды даже тогда, когда испытуемый читает книгу и не обращает никакого внимания на музыку. Мы также показали, что электрическая реакция мозга может быть вызвана не только специально созданными для эксперимента стимулами, но и «настоящей» музыкой Баха, Бетховена и Шуберта[20 - Koelsch, S., Kilches, S., Steinbeis, N., & Schelinski, S. (2008): Effects of unexpected chords and of performer’s expression on brain responses and electrodermal activity, PLoS One, 3 (7), e2631.].

Кроме того, мы проводили эксперименты с ЭЭГ на детях. До этого считалось общепринятым, что дети начинают понимать музыку не раньше младшего школьного возраста. Мне это мнение с самого начала казалось неправильным: я на примере собственных детей видел, как им нравилась музыка, как они подпевали, хлопали в ладоши и как чуть не валились от смеха со стульев, когда я демонстрировал им неправильные аккорды из своих экспериментов. Наша группа выявила электрические реакции мозга на необычные аккорды сначала у пятилеток, а затем и у детей в возрасте двух с половиной лет[21 - Jentschke, S., Friederici, A. D., & Koelsch, S. (2014): Neural correlates of music-syntactic processing in two-year old children, Developmental Cognitive Neuroscience, 9, S. 200–208.]. От некоторых родителей можно было услышать характерные высказывания: «Лично я не слышу никакого различия, а уж ребенок-то и подавно не услышит». Как бы не так: дети обычно воспринимают больше (и точнее), чем думают и воспринимают сами родители. Во всяком случае, в нашем эксперименте электрическая реакция мозга на неправильные аккорды отмечалась у самых маленьких детей. Они усваивают музыкальные знания сами по себе, без всяких объяснений со стороны (ни один ребенок до этого не посещал музыкальных занятий). Им достаточно всего лишь слушать музыку в детском саду или дома по радио. Это позволяет говорить о том, что у людей присутствует врожденная способность распознавать и усваивать музыкальные структуры и закономерности.

Электрические реакции мозга детей двух с половиной лет были еще весьма слабыми. Поэтому я могу предположить, что в возрасте от двух до двух с половиной лет дети только учатся откладывать в памяти синтаксические закономерности музыки и затем применять их по отношению к незнакомым мелодиям. Это тот же возраст, в котором они начинают реагировать на неправильную грамматику в речи.

Музыка и речь с точки зрения мозга

Рие Мацунага – музыковед из Японии – несколько лет стажировалась в нашей исследовательской группе. Меня тогда заинтересовало ее имя, потому что оно начиналось с буквы «Р», а большинство японцев не выговаривает ее. Выходит, что сами японцы называют ее Лие, а не Рие? Когда я спросил ее об этом, она недоуменно посмотрела на меня. Похоже, она не поняла сути моего вопроса даже после того, как я повторил его. Лишь некоторое время спустя до меня дошло: дело не в том, что японцы не выговаривают звук «Р», а в том, что «Р» и «Л» звучат для них одинаково. Когда я поинтересовался у Рие, неужели она действительно не слышит разницы между «Лие» и «Рие», она утвердительно кивнула головой.

Даже если это нам кажется само собой разумеющимся, обработка звуков речи, языка в целом и музыки относится к числу поразительных способностей мозга. Как ни странно, область взаимного перекрытия областей мозга, отвечающих за обработку музыкальной и речевой информации, очень велика. Она отражает тесное переплетение эволюционных корней речи и музыки. На первых стадиях мозг обрабатывает звуки речи и музыки практически одинаково. Это объясняется тем, что речь и музыка с чисто акустической точки зрения несут в себе одну и ту же информацию: и для тех, и для других звуков основными характеристиками являются диапазон частот и громкость. Поэтому звук скрипки похож на звук «и», фагота – на «о», тарелок – на «ц», а кастаньет – на «к». Таким образом, инструменты могут издавать звуки, схожие со звуками речи, а некоторые певцы, к примеру, Бобби Макферрин и Том Там, способны голосом имитировать звуки инструментов.

Каждый гласный звук является музыкальным. Акустические отличия между разными гласными зависят только от интенсивности обертонов (называемых в фонетике формантами). Акустические различия между гласными порой настолько незначительны, что требуется незаурядный музыкальный слух, чтобы расслышать их. Немцы без труда различают произношение «u» и «?», «o» и «?», а вот те, кто говорит на языках, для которых не свойственны подобные звуки, порой не может ни выговорить их, ни различить на слух. Или взять звук в норвежском языке, обозначаемый буквой «у». Он произносится как нечто среднее между немецким «i» и «?». Даже мне как музыканту трудно уловить на слух разницу между «i» и норвежским «у» (хотя музыкантам это дается легче)[22 - Kempe, V., Bublitz, D., & Brooks, P. J. (2015): Musical ability and non-native speech-sound processing are linked through sensitivity to pitch and spectral information, British Journal of Psychology, 106 (2), S. 349–366.]. Тот факт, что норвежские немузыканты с легкостью выговаривают и различают на слух свое «у», а немецкие немузыканты не испытывают проблем в различении «о» и «?», говорит о том, насколько восприимчив человек к звукам, даже если он не имеет отношения к музыке. Тот, кто способен нормально говорить, но при этом считает себя немузыкальным человеком, просто недооценивает свои поразительные слуховые способности.

Вообще-то маленькие дети четко подмечают и воспринимают разницу между всевозможными звуками речи. Лишь в девятимесячном возрасте они настолько привыкают к своему родному языку, что различия в звуках других языков начинают восприниматься ими все слабее[23 - Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006): Infants show a facilitation effect for native language phonetic perception between 6 and 12 months, Developmental Science, 9 (2), F13– 21.].

Акустические признаки согласных звуков представляют, как правило, сочетание частотных характеристик, затухания или нарастания громкости и продолжительности. Таким образом, согласные по своей структуре сложнее гласных, но по своим характеристикам мало чем отличаются от звуков музыки. Пользуясь этими характеристиками, мы можем, к примеру, различить звук малых тарелок хай-хэт («тс-с-с») и большой тарелки («тщ-щ-щ»), звучание гитарной («ди-и-и») и скрипичной струны («ни-и-и»).

Ввиду того, что звуки речи и музыки с акустической точки зрения несут одинаковую информацию, наш мозг на первой стадии обработки практически не делает различий между ними. Если отвлечься от отдельных звуков, то речь в целом также имеет общие черты с музыкой. Последовательности из нескольких речевых звуков – т. е. слова и фразы – создают речевую мелодию, благодаря которой мы можем отличить вопрос от ответа. Кроме того, в речи создается ритм, который облегчает ее восприятие. Важны и смысловые ударения, позволяющие лучше понять содержание. Благодаря им мы различаем фразы «ПЕТЕР играет на скрипке» и «Петер играет на СКРИПКЕ». Основываясь на эмоциональной окраске звучания, мы можем определить настроение говорящего. Мелодия, ритм, ударение, интонация – это общие характеристики и музыки, и речи. Неудивительно, что мозг обрабатывает музыку и речь отчасти в одних и тех же своих структурах.

Музыкальные аспекты речи важны для детей при освоении языка. Для них (и особенно младенцев) поначалу важно даже не то, что им говорят и что говорят (или лепечут) они сами, а то, как все это говорится, т. е. музыкальная сторона речи. Им еще только предстоит понять, что звуки речи обладают определенным смыслом.

Между тем новорожденные обладают поразительными способностями распознавания речи. На последних неделях беременности плод слышит разговор и пение матери (а также музыку, которую она слушает). Правда, частотный диапазон подвержен сильной фильтрации, но плод запоминает звуки голоса матери и после родов может отличить ее на слух от других женщин[24 - DeCasper, A. J., & Fifer, W. P. (1980): Of human bonding: Newborns prefer their mothers’ voices, Science, 208 (4448), S. 1174–1176.]. Новорожденные могут даже отличить язык, на котором говорила мать во время беременности, от других языков. Например, если у матери родной язык английский или испанский, то младенец сразу же после рождения способен распознать, говорят ли другие женщины по-английски или по-испански[25 - Moon, C., Cooper, R. P., & Fifer, W. P. (1993): Two-day-olds prefer their native language, Infant Behavior and Development, 16 (4), S. 495–500.].

Младенцы узнают голоса и языки по тембру, мелодии и ритму. Это становится возможным только благодаря поразительным музыкальным способностям, с которыми они появляются на свет. Именно эти способности помогают нам в детстве осваивать речь. Мы, взрослые, прислушиваемся в основном к содержательной стороне сказанного и пропускаем мимо ушей всю музыку, которая содержится в речи. Эту музыку мы слышим лишь, когда кто-то говорит на иностранном языке.

На более высоких ступенях обработки информации, там, где мозг определяет построение фразы и ее значение, также частично задействуются одни и те же нейронные ресурсы для речи и музыки. Мы выяснили, что электрические импульсы мозга в ответ на необычные аккорды отчасти возникают в той части лобной доли мозга, которая в левом полушарии носит название центра Брока? (рис. 1)[26 - Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001): Musical syntax is processed in Broca’s area: an MEG study, Nature Neuroscience, 4 (5), S. 540.]. Эта область мозга стала в свое время одной из первых, которую наделили особой функцией. В 1861 году невролог Поль Брока? обнародовал историю болезни одного пациента, которого он называл месье Тан. Этот пациент способен был произносить только один слог: «Тан». Вместе с тем он относительно свободно понимал речь окружающих. После смерти пациента врач исследовал его мозг и обнаружил, что часть левой фронтальной коры повреждена в результате инсульта. Сегодня эту область называют центром Брока, а нарушение речи после инсульта, при котором пациент лишается возможности говорить, но понимает обращенную к нему речь, носит название афазии Брока. Этот центр представляет собой ядро речевых структур мозга. Долгое время считалось, что его функции ограничены исключительно речью. Но наше исследование показало, что в круг его «интересов» входит и музыка. Это было первое функционально-нейроанатомическое свидетельство того, что музыка и речь отчасти обрабатываются одними и теми же сетевыми структурами мозга.

Рис. 1. Речевые и музыкальные структуры мозга. Слева – классическая речевая структура левого полушария с двумя речевыми областями: центром Брока и зоной Вернике. В обработке речевой информации задействованы и другие области слуховой коры. Справа – аналогичные области в правом полушарии обрабатывают музыкальную информацию. Правда, музыка частично обрабатывается в «речевой сети» левого полушария, а речь – в «музыкальной сети» правого полушария. Таким образом, это не две отдельные структуры, а скорее одна «музыкально-речевая сеть», которая занимается обработкой как речи, так и музыки.

Помимо изучения электрических сигналов мозга, я в то время провел и эксперимент с использованием функциональной магнитно-резонансной томографии (фМРТ). Этот метод позволяет чрезвычайно точно определить, какие структуры мозга проявляют особую активность. Я хорошо помню тот день, когда мы впервые рассматривали результаты эксперимента вместе с руководителем отдела неврологии Института Макса Планка Ивом фон Кармоном. Я вывел все результаты на монитор компьютера. Кармон вошел в кабинет, взглянул на экран и сразу сказал: «А, речевой эксперимент!». Изображение на мониторе было настолько похоже на данные эксперимента по изучению речи, что у него сразу возникло это предположение. Когда я сообщил о его заблуждении, он был настолько заинтригован, что едва мог оторваться от монитора, и наше обсуждение затянулось надолго, что я, будучи слушателем докторантуры, воспринял как большую честь.

По результатам исследования на фМРТ было видно, что необычные аккорды вызывали активизацию в центре Брока, а также в зоне Вернике (рис. 1). Невролог Карл Вернике спустя несколько лет после Брока описал пациентов, которые демонстрировали полную противоположность афазии Брока: они не понимали обращенной к ним речи, но могли говорить, хотя сказанное ими не имело смысла. После смерти у этих пациентов было обнаружено повреждение верхней височной извилины, а также прилегающих областей височной и теменной долей мозга. Таким образом, зона Вернике – это еще одно ядро речевых структур мозга. Именно оно было четко заметно на снимках фМРТ по итогам моего музыкального эксперимента (правда, чуть сильнее в правом полушарии мозга, чем при речевых экспериментах, где активизация более заметна в левом полушарии)[27 - Koelsch, S., Gunter, T. C., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002): Bach speaks: A cortical language-network serves the processing of music, Neuroimage, 17 (2), S. 956–966.]. Следовательно, эта структура, помимо речи, обрабатывает и музыкальную информацию или, другими словами, музыкальные центры мозга обрабатывают попутно и речь.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=68662365&lfrom=174836202) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Примечания

1

Немецкая детская песенка. Сл. народные, муз. А. Гретри. – Прим. ред.

2

Hublin, J. J., Ben-Ncer, A., Bailey, S. E., Freidline, S. E., Neubauer, S., Skinner, M. M…. & Gunz, P. (2017): New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens, Nature, 546 (7657), S. 289.

3

Attwell, D., & Laughlin, S. B. (2001): An energy budget for signaling in the grey matter of the brain, Journal of Cerebral Blood Flow & Metabolism, 21(10), S. 1133–1145.

4

Lehmann, C., Welker, L., & Schiefenh?vel, U. W. (2008): Der Singstreit in humanethologischer Perspektive, Musicae Scientiae, 12 (1), S. 115–145.

5

Blasi, D. E., Wichmann, S., Hammarstr?m, H., Stadler, P. F., & Christiansen, M. H. (2016): Sound-meaning Association Biases Evidenced Across Thousands of Languages, Proceedings of the National Academy of Sciences, 113 (39), S. 10818–10823.

6

Juslin, P. N., & Laukka, P. (2003): Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129 (5), S. 770.

7

Koelsch, S., Skouras, S., Fritz, T., Herrera, P., Bonhage, C., K?ssner, M. B., & Jacobs, A. M. (2013): The roles of superficial amygdala and auditory cortex in music-evoked fear and joy, Neuroimage, 81, S. 49–60.

8

Музыку, которую мы использовали в своем эксперименте, вы можете скачать или прослушать на сайте stefan-koelsch.de/stimulus_repository/joy_fear_neutral_music.zip

9

Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R…. & Koelsch, S. (2009): Universal recognition of three basic emotions in music, Current Biology, 19 (7), S. 573–576.

10

Zimmermann, E., Leliveld, L. M. C., & Schehka, S. (2013): Toward the evolutionary roots of affective prosody in human acoustic communication: a comparative approach to mammalian voices, Evolution of emotional communication: from sounds in nonhuman mammals to speech and music in man, S. 116, 132.

Похожие книги


Все книги на сайте предоставены для ознакомления и защищены авторским правом