Владимир Петров "Основы ТРИЗ. Теория решения изобретательских задач. Издание 3-е, исправленное и дополненное"

3-е издание учебника посвящено системному изложению теории решения изобретательских задач (ТРИЗ). Текст учебника уже публиковался отдельной книгой «Основы ТРИЗ, 2-е издание. В книге рассмотрены методы постановки и решения нестандартных задач, законы развития систем, вепольный анализ, способы разрешения противоречий, выявления, использования ресурсов и способы развития творческого мышления.Книга предназначена бизнесменам, инженерам, изобретателям, и людям, решающим творческие задачи.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785005991171

child_care Возрастное ограничение : 12

update Дата обновления : 20.04.2023


Закономерность увеличения степени динамичности является основным из законов эволюции систем (рис. 4.37).

Рис. 4.37. Структура закономерностей эволюции систем

Развитие системы идет в направлении увеличения степени динамичности.

Динамичная система может изменять свои параметры, структуру (в частности форму), алгоритм, принцип действия и функции, чтобы наиболее эффективно достичь поставленной цели и удовлетворить потребность. Динамическая система в своем развитии может менять так же цель и потребность, приспосабливаясь к внешним и внутренним изменениям.

Изменения могут происходить:

– во времени;

– по условию.

Следствия из закона:

1. Статические системы стремятся стать динамическими;

2. Системы развиваются в сторону увеличения степени динамичности.

Приведем пример на увеличения степени динамичности.

Пример 4.67. Электронная книга

Первоначально книга представляла собой свиток, как правило из папируса или пергамента.

В дальнейшем книги делались из отдельных листков бумаги, скрепленных вместе переплетом. Их стало удобнее читать, и они занимали меньше места. Для получения бумаги необходимо уничтожать лес. Они много весят, занимают много места на полках и пылятся.

Далее книги слали переводить в электронный вид и читали с экрана компьютера. Такие книги не использовали бумагу, занимали мало места и не пылились, в одном компьютере можно иметь большую библиотеку, но появились неудобства, связанные с процессом чтения, – не везде удобно читать с компьютера, например, в кровати. В дальнейшем появились лэптопы, миникомпьютеры и планшеты. Их легко переносить и удобно читать в любом месте. Общий недостаток компьютеров – не все любят читать с экрана. Кроме того, чтение с экрана портит зрение, так как экран излучает свет, который непосредственно направлен в глаза.

Выпустили электронную книгу (e-book reader), в которую можно загружать много книг.

Такие книги используют электронную бумагу (electronic paper), в которой используются электронные чернила (e-inc). Электронная бумага отражает свет, так же как обычная книга, поэтому не портит зрение.

Увеличение динамичности происходит изменением динамичности параметров, структуры, алгоритма и принципа действия, функции, потребности и цели, которое может происходить во времени, в пространстве и по условию.

Степень динамичности увеличивается переходом от изменения динамичности параметров к изменению динамичности структуры, алгоритма, принципа действия, функции, потребности и цели.

Основная линия увеличения степени динамичности показана на рис. 4.38.

Изменение параметров системы – это наиболее простой способ увеличения степени динамичности системы с целью ее адаптации к внутренним и внешним изменениям.

Изменяться может любой параметр системы, например, электрические параметры (величина тока, напряжения, сопротивления и т. д.), оптические параметры (длина волны, яркость, освещенность и т. д.), акустические параметры (амплитуда и частота звука и т. п.), механические параметры (эластичность, жесткость, вязкость, число степеней свободы и т. д.).

Рис. 4.38. Линия увеличения степени динамичности

Пример 4.68. Оперативные запоминающие устройства – ОЗУ (RAM)

Оперативные запоминающие устройства – ОЗУ (RAM) созданы для хранения информации в цифровом виде. ОЗУ работает, пока на микросхему подается питание. После отключения питания информация теряется.

В дальнейшем были созданы динамические ОЗУ (DRAM). С их помощью сократили время обмена информацией (запись и считывание). Динамические ОЗУ построены на электронных приборах с зарядовой связью. Информация хранится на паразитных конденсаторах (емкостях) транзисторов, как пакеты зарядов. Они обладают высокой скоростью обмена информации (пакетов зарядов), но не способны хранить ее длительное время (<1 мс).

Для решения этой задачи в DRAM осуществляется непрерывная циклическая перезапись (обновление) информации. Это пример изменения параметров во времени.

Увеличение степени динамичности системы может осуществляться путем изменения структуры системы – это более сложный способ сделать систему динамичной, чем изменение параметров. Под изменением структуры мы понимаем и изменение формы объекта.

Увеличение степени динамичности системы может осуществляться путем изменения алгоритма работы.

Пример 4.69. Микросхемы

Разработали программируемые логические интегральные схемы – ПЛИС (Field Programmable Gate Arrays – FPGA). В отличие от обычных цифровых микросхем логика работы ПЛИС не создается при изготовлении, а устанавливается посредством ее программирования.

ПЛИС представляет собой набор элементов, расположенные в виде матрицы. Между элементами расположены соединительные трассы, представляющие собой программируемые ключи, соединяющие необходимые блоки. Пользователь может создать нужную для него структуру, программируя определенную логику.

Таким образом, данная микросхема позволяет менять ее внутреннюю структуру и алгоритм работы в зависимости от функции, которую необходимо выполнять. ПЛИС можно перепрограммировать под новую функцию.

Это пример изменения структуры, алгоритма и функции по условию (принцип работы или изменение принципа работы).

Увеличение степени динамичности системы может осуществляться путем изменения ее принципа действия.

Пример 4.70. Обрабатывающий центр

Обрабатывающий центр – это станок с числовым программным управлением (ЧПУ), предназначенный для последовательного выполнения нескольких технологических операций различными инструментами по заданной программе. В качестве инструмента могут быть использованы: резец, фреза, сверло, плазма, лазер и т. п. При переходе к следующей операции станок меняет инструмент, а, следовательно, и принцип действия и алгоритм работы.

Это пример изменения структуры, алгоритма и принципа действия по условию (переход к другой операции).

Увеличение степени динамичности системы может осуществляться путем изменения выполняемой функции.

Пример 4.71. Мобильный телефон

Современный мобильный телефон выполняет много различных функций.

Это пример изменения алгоритма, принципа действия и функции по условию, выполняя ту или другую потребность владельца.

Увеличение степени динамичности системы может осуществляться путем изменения потребностей.

Пример 4.72. Компьютер

Компьютер является наиболее развитой динамической системой. Трудно перечислить все функции, которые он выполняет, и потребности, которые он удовлетворяет.

Это пример изменения алгоритма, функции и потребностей по условию (желание владельца).

Увеличение степени динамичности системы может осуществляться путем изменения целей.

Пример 4.73. Беспилотный самолет

Беспилотный самолет может изменить цель своего полета в зависимости от изменения обстоятельств. Например, перейти от наблюдения к боевым действиям.

Это пример изменения цели по условию.

Система тем динамичнее, чем она более управляемая.

Динамичность системы повышается с увеличением скорости и точности адаптации к внешним и внутренним изменениям.

Скорость увеличения динамичности повышается с учетом изменений не только определенного параметра, а и его производных.

Идеально, когда система заранее готова к изменениям, т. е. имеет способность заранее прогнозировать изменения. С этой целью система должна использовать и/или выявлять и использовать тенденции, закономерности и законы развития системы, надсистемы и окружающей среды.

Точность адаптации может быть увеличена, если в законе управления системой учитывается интеграл от всех изменений или ведется учет предыдущих изменений.

Пример 4.74. Система управления

Системы управления для объектов с быстро изменяемыми параметрами должны управляться не только по самому сигналу, но и по его первой, второй или более высоким производным.

При длительной работе системы в закон управления желательно вводить интеграл управляемой величины для повышения точности управления.

Статические системы достаточно устойчивы, но не мобильны. Мобильные системы часто не устойчивы. Для придания системе максимальной мобильности и устойчивости ее выполняют динамически статичной.

Динамическая статичность системы осуществляется за счет постоянного управления максимально мобильной системой.

Пример 4.75. Велосипед

Двух колесный велосипед устойчив только в процессе движения. Это динамическая устойчивость или динамическая статичность. Еще менее устойчив одноколесный велосипед.

4.5.5. Закономерность перехода на микроуровень

Закономерность перехода системы на микроуровень является основной из закономерностей эволюции систем (рис. 4.39).

Рис. 4.39. Структура закономерностей эволюции систем

Закономерность перехода системы на микроуровень заключается в том, что система в своем развитии стремится перейти на микроуровень. Чаще всего это относится к рабочему органу.

Микроуровень условное понятие. В работе участвуют все более глубинные структуры вещества, например, использование нанотехнологий. При этом используются физические, химические, биологические и математические эффекты.

Классическими примерами перехода системы с макро- на микроуровень являются часы, вычислительная техника и электроника.

История развития часов насчитывает тысячелетия.

Пример 4.76 Часы

Первоначально время определяли по звездам, в дальнейшем изобрели солнечные часы. Затем появились водяные, песочные и огненные часы.

Впоследствии их заменили механическими часами. Башенные часы были заменены карманными и ручными. Происходил процесс миниатюризации, но принцип действия их практически не изменился – колебание маятника и использование шестеренок, пружин и т. д.

Первый качественный скачек в переходе на микроуровень осуществился с изобретением кварцевых часов. В них в качестве колебательной системы стали использовать кристалл кварца. Маятник заменили кристаллом. Сигнал от кварцевого генератора поступает на шаговый двигатель, который приводит в действие механическую часть часов.

Похожие книги


Все книги на сайте предоставены для ознакомления и защищены авторским правом