Маргарита Васильевна Акулич "Нейронные сети в маркетинге, электронной коммерции, планировании производства и логистике"

В предлагаемой книге раскрыто понятие нейронных сетей. Рассказано об использовании их в маркетинге, электронной коммерции, планировании производства и логистике.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785006004931

child_care Возрастное ограничение : 12

update Дата обновления : 20.05.2023

Нейронные сети в маркетинге, электронной коммерции, планировании производства и логистике
Маргарита Васильевна Акулич

В предлагаемой книге раскрыто понятие нейронных сетей. Рассказано об использовании их в маркетинге, электронной коммерции, планировании производства и логистике.

Нейронные сети в маркетинге, электронной коммерции, планировании производства и логистике

Маргарита Васильевна Акулич




© Маргарита Васильевна Акулич, 2023

ISBN 978-5-0060-0493-1

Создано в интеллектуальной издательской системе Ridero

Предисловие

В предлагаемой книге раскрыто понятие нейронных сетей. Рассказано об использовании их в маркетинге, электронной коммерции, планировании производства и логистике.

I Искусственные нейронные сети: основные понятия

Искусственный интеллект (Artificial intelligence – AI) в маркетинге – тема, которая сейчас доминирует в отрасли. Начиная со всех текущих приложений в автоматизации маркетинга и предиктивной аналитике и заканчивая важным вопросом: Что дальше?

Чтобы лучше понять, куда ведет нас этот глубокий сдвиг в технологии, давайте рассмотрим являющиеся движущей силой изменений мыслительные процессы, компьютерные мыслительные процессы, то есть искусственные нейронные сети.

Если говорить о рынке технологий, он демонстрирует неуклонный рост, в новостях о нем сообщается все чаще. У нейронных сетей много способностей – они способны к обсчету необходимых для принятия решений в маркетинге, бизнесе, продажах и даже в человеческой жизни сложных данных, генерированию текстов и рисованию.

В данной книге мы дадим объяснение того, что собой представляют нейронные сети, как они работают и какая от них польза.

1.1 Что собой представляют искусственные нейронные сети? Как происходит работа нейронных сетей

Что собой представляют искусственные нейронные сети?

Искусственные нейронные сети (Artificial Neural Networks – ANNs) рассматриваются в качестве систем обработки данных, имитирующих работу мозга человека. Имеет место связь цифровых нейронов друг с другом виртуальными синапсами, через которые происходит передача информация. Они имеют отношение к таким областям, как искусственный интеллект и машинное обучение (Machine learning – Ml).

Искусственные нейронные сети – это важный раздел машинного обучения. Именно их используют ученые-компьютерщики для решения сложных задач, таких как составление прогнозов, разработка стратегий и распознавание тенденций.

В отличие от иных алгоритмов машинного обучения, способных упорядочивать данные или пересчитывать цифры, нейронные сети учатся на опыте. Как люди. Нейронные сети, как следует из названия, созданы по образцу нейронных сетей человеческого мозга, отвечающих за принятие человеком решений. Мозг получает информацию, а затем пытается соединить точки, чтобы прийти к заключению.

Сходство ANNs с мозгом человека дает им шанс на запоминание данных, осуществление их анализа и воспроизведение. Появление первой такой системы (как считается) произошло в 1958-м г., когда нейрофизиолог Фрэнк Розенблатт (называемый иной раз отцом глубокого обучения), американский психолог, известный в качестве специалиста в области искусственного интеллекта проявил новаторство в области нейронных сетей, н. В то время у несложной нейронной сети (математической модели) имелась способность к моделированию восприятия машинной информации подобно тому, как это делает человеческий мозг.

Фрэнк Розенблатт в конце 1950-х годов представил публике одного из «дедушек» современных нейронных сетей – перцептрон, однако до Розенблатта были другие, не столь отягощенные известностью попытки описания принципов, по которым могла бы работать подобная человеческому мозгу «думающая» машина. Модель, полученная благодаря исследованиям Уоррена Мак-Каллока и Уолтера Питтса, увидела свет в 1943-м г. в статье, название которой – «Логическое исчисление идей, относящихся к нервной активности», это было для того времени весьма новаторское изобретение.

Сейчас мы видим, насколько эффективными могут быть искусственные нейронные сети. С их помощью даже возможно создание пользователями всего за несколько минут уникальных аватаров из своих изображений для соцсетей.

У людей не всегда что-то получается с первого раза, как и у алгоритмов машинного обучения. Но путем проб и ошибок люди, а также искусственные нейронные сети (ANNs), начинают приходить к получению лучших результатов.

Как происходит работа нейронных сетей

ANNs базируются на имитации работы мозга человека, где происходит передача электронных импульсов от одного нейрона к другому.

В искусственном варианте нейроны представляются как программные узлы, подчиняющиеся заданным алгоритмам, и обеспечивается передача сигналов от одного узла к другому благодаря синапсам.

В настоящее время большинство ANNs относительно просты по сравнению со сложными нейронными взаимодействиями, которые происходят, когда решения принимает человеческий разум. Есть входной слой, выходной слой и слой скрытый, между которыми находятся сотни виртуальных узлов, к которым подключается алгоритм, пытаясь достичь результата.

Чтобы «научиться», алгоритм при каждом вводе изменяет внутренние связи, пока не поймет, как достичь желаемого результата с заданным уровнем точности. После того как алгоритм научится, возможно введение большего числа входных данных, и нейронная сеть выдает работоспособное предсказание или решение.

1.2 Что собой представляет глубокое обучение? Что значимо для работы системы?

Что собой представляет глубокое обучение?

Глубокое обучение, или DL (Deep learning), относится к более интенсивной версии машинного обучения. Помните один скрытый слой в искусственной нейронной сети? В DL существует ряд слоев

Нейронные сети глубокого обучения не только более сложны, но именно здесь существует надежда (и страх), что алгоритмы взлетят и начнут обучаться сами по себе. Там, где технология находится сейчас, будь то базовое машинное обучение или DL, алгоритмы все еще зависят от получения входных данных от людей (т.е. из внешних источников).

Что значимо для работы системы?

Для обучения нейронной сети требуется подготовка входных данных, без которых создание или распознание чего-либо просто невозможно. Сначала необходимо позаботиться о сборе данных.

Для обучения требуется большое количество примеров, чтобы система была в состоянии понимать закономерности. К примеру, если задача нейросети состоит в обретении способности различения рукописных букв «А» и «Б», требуется загрузка сотен или даже тысяч файлов с изображениями соответствующих букв.

Для обучения нейросетей необходимо человеческое участие.

В одном из сценариев специалистом делается выбор необходимых данных и производится загрузка их в систему, самостоятельно затем их анализирующую. В другом сценарии человеком задаются алгоритмы и исправляются сделанные роботом ошибки.

К примеру, проанализировав рукописные «А» и «Б», система в итоге выдала числовое значение (в задачу входило нахождение «Б»). Чем число больше, тем нейронная сеть более уверена в правильности данного варианта. Людям ответ известен, и если обнаруживается ошибка, ими осуществляется корректировка параметров в системе и дается команда произвести пересчет.

1.3 Слои базовой нейронной сети

Ниже дано сильно упрощенное описание трех слоев базовой нейросети

Слой входной

Слоем входным получаются из внешнего мира данные. Они подвергаются анализу, распределяются и передаются на следующий уровень.

Слой выходной

Слой выходной – дающий окончательный результат.

Слой скрытый

Слой скрытый (таких слоев может быть несколько) – отвечающий за обработку информации из слоя первого и иных скрытых слоев. Обеспечивается извлечение конкретных признаков.

1.4 Группировка нейронных сетей

Нейронные сети разнятся по таким переменным, как тематика, задачи и структура.

Имеет место существование большого числа классификаций, но самыми распространенными являются следующие:

Персептроны

Работают со сложными вычислениями.

Генеративные

Создают изображения и тексты сами на основе данных.

Все книги на сайте предоставены для ознакомления и защищены авторским правом