ISBN :
Возрастное ограничение : 12
Дата обновления : 08.06.2023
так как
Заметим, что потенциальная энергия вкладывается в рассматриваемый процесс лишь в течение половины периода T. Чтобы учесть это, запишем
что совпадает с предыдущим результатом.
в результате получим:
Для окончательной уверенности во всеобщности полученной зависимости решим третью простую задачу динамики, рассмотрев движение физического маятника, колеблющегося вокруг оси.
Определим период колебаний тела с постоянным весом P, центр тяжести которого C расположен на расстоянии r от оси вращения. Угол отклонения тела от положения равновесия ? будем считать малым, когда можно принять
Силу тяжести будем считать приложенной к телу в центре тяжести C.
Тогда
при малых углах, где Pt – тангенциальная составляющая веса тела. Момент этой силы по отношению к оси вращения
Под влиянием этого момента тело приобретает угловое ускорение
где J – момент инерции тела относительно оси О.
Подставляя значения ? и M, получим:
Полагая
получим:
Полученное уравнение также является уравнением гармонических колебаний с периодом
или в радианной мере
Подставив в уравнение для T значение ?, найдем:
Умножим числитель и знаменатель выражения на ?
и, учитывая также, что
получим:
Заметим, что
– путь, проходимый центром тяжести при колебаниях. Соответственно, r
? ?
= x
, то есть
а
Отсюда
но
Так как и здесь потенциальная энергия вкладывается в процесс только в течение половины периода, запишем:
В итоге получим:
Сопоставим все три выражения, полученные из трех различных задач динамики:
Поскольку в двух последних случаях за время развития процесса потенциальная энергия полностью переходит в кинетическую и обратно, а в первом случае (при торможении) кинетическая может переходить в тепловую, то есть в процессе могут участвовать различные виды энергии, обобщим найденные зависимости, записав:
где E – сторонняя энергия, участвующая в процессе.
Рассмотрим выражение
. Присутствие в нем меры инерции точки и квадрата расстояния, которое она проходит под действием приложенной силы, определяет степень противодействия массы m изменению ее в данном случае кинетической энергии. Размерность этой величины совпадает с размерностью момента инерции при вращении тела вокруг оси, поэтому естественно назвать величину
– обобщенным моментом инерции массы m.
Здесь хорошо видно, что масса есть численная характеристика степени противодействия сил инерции работе внешней силы.
В итоге для искомой функции получаем:
где
– временной интервал;
J – обобщенный момент инерции;
E – сторонняя энергия.
Заметим, что в нашем случае Е есть сторонняя энергия, относящаяся исключительно к отдельному процессу, рассматриваемому нами изолированно, поэтому ее соотношение с энергиями других процессов принципиально не рассматривается.
Система единиц выбирается всякий раз таким образом, чтобы не пришлось вводить ненужные коэффициенты.
Особо отметим, что момент инерции тела
легко преобразуется в случае колебательного движения тела в обобщенный момент инерции J.
Рассмотрим также случай, когда энергия извлекается из инерциального движения. В этом случае при торможении тела появляется сила инерции, которая производит работу против сил сопротивления движению. Несмотря на то что эта сила непосредственно выводится из рассматриваемого движения, в данном случае она все равно является сторонней силой и работа, производимая этой силой, также является работой сторонней силы. Объяснить это возможно следующими обстоятельствами. Во-первых, при истинно инерциальном движении тела в самом движении мы не можем обнаружить никаких побуждающих сил – ни внутренних, ни внешних. Во-вторых, сила инерции возникает лишь тогда, когда изменяется скорость тела, а это возможно в рассматриваемом случае лишь при внешнем изменении условий движения тела, т. е. при торможении. Сила инерции, которая и производит работу против сил сопротивления, тем самым определяется внешними причинами, хотя и действует в самом движении. Противодействие этой силы силам торможения становится возможным лишь потому, что тело имеет запас кинетической энергии, полученной вследствие того, что ранее сторонняя энергия была вложена в процесс движения. Отсюда видно, что изменение энергии, получающееся вследствие работы этой силы, есть изменение ранее вложенной сторонней энергии, извлекаемой в данном случае из движения. И всякий раз, когда мы вычисляем временной интервал, необходимо сопоставлять с этой энергией обобщенный момент инерции, соответствующий тем условиям, при которых именно эта энергия извлекается.
Необходимо отметить также, что мы рассматриваем здесь элементарные случаи вычисления временного интервала. В более сложных случаях, когда в одном и том же процессе происходит одновременное множественное преобразование вложенной энергии, выражение для него может содержать сумму элементарных процессов и состоять из нескольких отношений обобщенных моментов инерции к соответствующим им элементам вложенной энергии.
Все книги на сайте предоставены для ознакомления и защищены авторским правом