Джейд Картер "Машинное обучение"

grade 5,0 - Рейтинг книги по мнению 70+ читателей Рунета

Книга представляет комплексное руководство по применения МО в сфере бизнеса. Автор исследует различные аспекты МО и его роль в современных бизнес-процессах, а также предлагают практические рекомендации по использованию этих технологий для достижения конкурентных преимуществ и улучшения результатов.В книге рассматриваются алгоритмы МО и объясняется, как они могут быть применены в различных сферах бизнеса, включая маркетинг, финансы, производство, здравоохранение и другие. Автор предлагает практические примеры и сценарии использования МО и как оно может быть внедрено в организациях.Особое внимание уделяется вопросам предобработки и анализу данных. Методы работы с Big Data и подходы к обработке неструктурированных данных. Этические и юридические аспекты МО в бизнесе, включая вопросы конфиденциальности и защиты данных.Книга полезна для менеджеров, аналитиков, предпринимателей и всех, кто заинтересован в использовании МО для оптимизации бизнес-процессов и принятия обоснованных решений.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 16

update Дата обновления : 19.06.2023

Машинное обучение
Джейд Картер

Книга представляет комплексное руководство по применения МО в сфере бизнеса. Автор исследует различные аспекты МО и его роль в современных бизнес-процессах, а также предлагают практические рекомендации по использованию этих технологий для достижения конкурентных преимуществ и улучшения результатов.В книге рассматриваются алгоритмы МО и объясняется, как они могут быть применены в различных сферах бизнеса, включая маркетинг, финансы, производство, здравоохранение и другие. Автор предлагает практические примеры и сценарии использования МО и как оно может быть внедрено в организациях.Особое внимание уделяется вопросам предобработки и анализу данных. Методы работы с Big Data и подходы к обработке неструктурированных данных. Этические и юридические аспекты МО в бизнесе, включая вопросы конфиденциальности и защиты данных.Книга полезна для менеджеров, аналитиков, предпринимателей и всех, кто заинтересован в использовании МО для оптимизации бизнес-процессов и принятия обоснованных решений.

Джейд Картер

Машинное обучение




Список сокращений

1. МО – машинное обучение

2. ИИ – искусственный интеллект

3. СЗ – супервизированное обучение

4. БЗ – безнадзорное обучение

5. ПЗ – полузаданные обучение

6. НС – нейронная сеть

7. SVM – метод опорных векторов

8. RF – случайный лес

9. CNN – сверточная нейронная сеть

10. RNN – рекуррентная нейронная сеть

11. MLP – многослойный персептрон

12. SGD – стохастический градиентный спуск

13. NLP – обработка естественного языка

14. CV – компьютерное зрение

15. DL – глубокое обучение

16. ROI – возврат инвестиций

17. KPI – ключевые показатели эффективности

18. CRM – управление взаимоотношениями с клиентами

19. ERP – система планирования ресурсов предприятия

20. BI – бизнес-аналитика

Глава 1: Введение в машинное обучение и его роль в бизнесе

1.1. Основные понятия и термины в машинном обучении

Обучение с учителем – форма машинного обучения, где системе предоставляется обучающая выборка с входными данными и соответствующими выходными значениями.

Признаки – характеристики или свойства объектов, которые описывают данные.

Метки (выходные значения, целевые переменные) – значения, которые система должна предсказывать или классифицировать на основе входных данных.

Модель – математическая функция, которая принимает входные данные и выдает предсказания или классификации.

Обучение – процесс, в ходе которого модель настраивается на основе обучающей выборки для минимизации ошибки предсказания.

Тестирование – процесс оценки производительности модели на новых данных, не участвующих в обучении, с целью оценки ее обобщающей способности.

Переобучение – состояние модели, когда она становится слишком сложной и настраивается на шум в данных, в результате чего ее способность обобщения страдает.

Недообучение – состояние модели, когда она слишком проста и не способна выявить сложные закономерности в данных, что приводит к низкой производительности на новых данных.

Гиперпараметры – параметры модели, которые задаются вручную перед началом обучения и влияют на ее поведение и производительность, например, скорость обучения, количество эпох и размер скрытых слоев в нейронной сети.

Алгоритмы обучения – методы и процедуры, используемые для обучения моделей на основе обучающих данных, например, линейная регрессия, метод опорных векторов (SVM), деревья решений, нейронные сети и другие.

Регуляризация – техника, используемая для предотвращения переобучения модели путем добавления штрафов или ограничений на значения параметров модели.

Кросс-валидация – метод оценки производительности модели, который заключается в разделении обучающей выборки на несколько подмножеств (фолдов) для обучения и тестирования модели, с последующим усреднением результатов.

Метрики оценки – числовые значения, используемые для измерения качества предсказаний модели, например, точность, полнота, F-мера, среднеквадратическая ошибка (MSE) и другие.

Разделение выборки – процесс разбиения общего набора данных на обучающую, тестовую и, иногда, валидационную выборки для обучения, тестирования и настройки модели соответственно.

Размер выборки – количество образцов данных, доступных для обучения модели.

Препроцессинг данных – этап подготовки данных перед обучением модели, включающий операции, такие как нормализация, масштабирование, заполнение пропущенных значений, кодирование категориальных признаков и другие.

Распределение данных – статистическая характеристика данных, которая описывает их вероятностные свойства, такие как среднее значение, дисперсия и форма распределения.

Ансамбли моделей – методы, которые объединяют предсказания нескольких моделей для получения более точного и устойчивого результата, например, бэггинг, случайный лес и градиентный бустинг.

Большие данные – наборы данных, которые характеризуются объемом, разнообразием и скоростью обновления, требующие специальных подходов и инструментов для их анализа и обработки.

Параметры модели – внутренние настраиваемые переменные, которые определяют ее поведение и способность предсказывать выходные значения. При обучении модели параметры настраиваются таким образом, чтобы минимизировать ошибку предсказания.

Функция потерь – математическая функция, которая измеряет расхождение между предсказанными и фактическими значениями модели. Цель обучения заключается в минимизации значения функции потерь.

Градиентный спуск – метод оптимизации, используемый для настройки параметров модели путем поиска оптимальных значений, исходя из градиента функции потерь. Градиентный спуск позволяет модели постепенно приближаться к минимуму функции потерь.

Регрессия – задача машинного обучения, которая связана с предсказанием непрерывных выходных значений на основе входных данных. Например, регрессионная модель может прогнозировать цену недвижимости на основе ее характеристик.

Классификация – задача машинного обучения, которая заключается в присвоении входным данным определенных категорий или классов. Классификационная модель может, например, определять, является ли электронное письмо спамом или не спамом.

Нейронные сети – модели машинного обучения, которые состоят из искусственных нейронов, объединенных в слои. Нейронные сети способны обрабатывать сложные входные данные и выявлять скрытые закономерности. Они широко используются в различных областях, таких как компьютерное зрение и естественный язык.

Сверточные нейронные сети – специализированный тип нейронных сетей, которые эффективно работают с входными данными в виде изображений. Они используют операцию свертки для извлечения локальных признаков из изображений и позволяют достигать высокой точности в задачах компьютерного зрения.

Рекуррентные нейронные сети – тип нейронных сетей, которые обладают памятью и могут обрабатывать последовательные данные, сохраняя информацию о предыдущих состояниях. Они часто применяются в задачах обработки естественного языка и временных рядов.

Безопасность и этика в машинном обучении – область, которая изучает вопросы связанные с надежностью, прозрачностью и справедливостью моделей машинного обучения. Включает в себя вопросы конфиденциальности данных, предвзятости моделей и этического использования искусственного интеллекта.

Андерсемплинг – метод сокращения преобладающего класса в несбалансированных данных путем удаления части образцов этого класса.

Оверсемплинг – метод увеличения меньшего класса в несбалансированных данных путем добавления дубликатов или синтетических образцов этого класса.

Автоэнкодеры – тип нейронных сетей, используемых для обучения представлений данных путем кодирования и декодирования входных сигналов. Они могут быть использованы для извлечения скрытых признаков или снижения размерности данных.

Алгоритмы кластеризации – методы, используемые для разделения множества данных на группы или кластеры на основе их сходства. Примеры включают k-средних, иерархическую кластеризацию и DBSCAN.

Обратное распространение ошибки – алгоритм, используемый для обучения нейронных сетей путем вычисления и корректировки градиента функции потерь от выхода к входу сети.

Метод главных компонент (PCA) – метод снижения размерности данных путем преобразования их в новое пространство признаков, состоящее из линейных комбинаций исходных признаков с наибольшей дисперсией.

Рекомендательные системы – системы, используемые для предоставления рекомендаций пользователю на основе его предпочтений и поведения. Они широко применяются в электронной коммерции, музыкальных стриминговых сервисах и социальных сетях.

Генеративные модели – модели, которые могут генерировать новые данные, имитируя вероятностные распределения исходных данных. Примеры включают генеративные состязательные сети (GAN) и вариационные автоэнкодеры.

Понимание этих концепций является важным фундаментом для дальнейшего изучения и применения методов машинного обучения.

1.2. Преимущества и потенциал применения машинного обучения в бизнесе

В последние годы машинное обучение стало одной из самых обсуждаемых и востребованных областей в сфере бизнеса. Его способность анализировать данные, выявлять скрытые закономерности и делать предсказания делает его мощным инструментом для повышения эффективности и принятия обоснованных решений. В этой главе рассмотрим преимущества и потенциал применения машинного обучения в бизнесе.

1. Улучшение прогнозирования и планирования

Машинное обучение предоставляет бизнесу мощный инструмент для предсказания будущих событий и трендов на основе анализа больших объемов данных. Эта способность может быть особенно ценной для компаний, поскольку позволяет им получать ценную информацию, которая помогает принимать осознанные и стратегические решения.

Одной из ключевых преимуществ МО для бизнеса является его способность предсказывать спрос на товары и услуги. Алгоритмы машинного обучения могут анализировать исторические данные о покупках, предпочтениях клиентов, сезонных факторах и других факторах, чтобы определить вероятные тренды спроса в будущем. Это позволяет компаниям прогнозировать спрос и принимать меры заранее, чтобы эффективно планировать производство, управлять запасами и оптимизировать бизнес-процессы.

Прогнозирование рыночных тенденций является еще одной сильной стороной машинного обучения в бизнесе. Алгоритмы машинного обучения могут анализировать данные о рынке, экономических показателях, конкурентной среде, социальных медиа и других источниках, чтобы выявить тенденции и понять, как они могут повлиять на бизнес. Это позволяет компаниям принимать основанные на фактах решения, адаптироваться к изменениям рынка и найти новые возможности для роста.

МО также играет важную роль в планировании производства и оптимизации цепей поставок. Алгоритмы машинного обучения могут анализировать данные о заказах, производственных мощностях, поставках и других факторах, чтобы оптимизировать процессы производства и распределение ресурсов. Это позволяет компаниям улучшить эффективность и гибкость производства, снизить затраты и улучшить обслуживание клиентов.

Благодаря алгоритмам машинного обучения, бизнес может принимать более точные и основанные на данных решения. Модели машинного обучения могут анализировать сложные взаимосвязи между различными переменными и выявлять скрытые паттерны, которые могут быть незаметны для человеческого анализа. Это помогает компаниям принимать обоснованные и обоснованные решения, основанные на объективных фактах и статистических моделях.

2. Автоматизация и оптимизация бизнес-процессов

МО имеет потенциал автоматизировать рутинные задачи и процессы в бизнесе, что может привести к значительным выгодам. Автоматизация позволяет освободить время и ресурсы сотрудников, чтобы они могли сконцентрироваться на более стратегических и креативных задачах.

Одной из областей, где машинное обучение может быть применено для автоматизации, является клиентское обслуживание. Чат-боты, основанные на алгоритмах машинного обучения, могут быть использованы для автоматизации ответов на типовые вопросы и запросы клиентов. Они могут обрабатывать и анализировать текстовые данные, понимать намерения клиентов и предоставлять релевантные ответы. Это позволяет снизить нагрузку на сотрудников, освободить их время от рутинных запросов и улучшить общее качество обслуживания клиентов.

Другой пример автоматизации с помощью МО – системы распознавания речи. Они могут быть использованы для автоматической транскрипции аудио- или видеозаписей, распознавания команд голосового управления или анализа разговоров с клиентами. Это снижает необходимость в ручной обработке и анализе больших объемов аудио- или видеоданных и повышает эффективность работы сотрудников.

Оптимизация бизнес-процессов с помощью алгоритмов МО также позволяет более эффективно использовать ресурсы и сократить издержки. Например, алгоритмы МО могут быть применены для прогнозирования спроса на товары или услуги, что позволяет компаниям планировать закупки и производство более точно и эффективно. Также алгоритмы МО могут помочь в оптимизации логистических и поставочных цепочек, оптимальном планировании маршрутов доставки или управлении запасами.

МО имеет потенциал значительно улучшить автоматизацию рутинных задач и процессов в бизнесе. Это позволяет более эффективно использовать ресурсы, сократить издержки и освободить время для выполнения более важных и стратегических задач.

3. Улучшение клиентского опыта и персонализация

МО играет важную роль в понимании предпочтений и поведения клиентов в бизнесе. Анализ больших объемов данных с применением алгоритмов МО позволяет выявлять скрытые паттерны и тренды, которые могут указывать на предпочтения и интересы клиентов.

Алгоритмы рекомендаций, основанные на МО, способны анализировать исторические данные о покупках, предпочтениях, поведении и интересах клиентов. Они создают уникальные профили клиентов и используют эти данные для предложения персонализированных товаров и услуг. Например, на основе предыдущих покупок клиентов и сходных паттернов поведения, система рекомендаций может предложить товары, которые могут заинтересовать конкретного клиента.

Все книги на сайте предоставены для ознакомления и защищены авторским правом