ISBN :
Возрастное ограничение : 18
Дата обновления : 29.09.2023
В области фотоники, подход программируемой интегральной фотоники призван дополнить доминирующий в последние годы подход, основанный на ASPIC. Это позволит использовать универсальные свойства данного подхода и достичь преимуществ, аналогичных тем, которые предоставляют ПЛИС по сравнению с ASIC в электронике.
Программируемая интегральная фотоника вызывает интерес многих исследовательских групп по всему миру благодаря появлению новых приложений, которые требуют гибкости, реконфигурируемости, а также недорогих, компактных и малопотребляющих устройств.
Одной из областей, в которой проведены значительные работы, является квантовые информационные технологии. Программируемая интегральная фотоника может открыть путь к крупномасштабным квантовым затворам и схемам выборки бозонов на основе унитарных матричных преобразований.
В области телекоммуникаций программируемая интегральная фотоника может быть использована для реализации ряда функций обработки сигналов. Например, для создания преобразователей произвольных мод, устройств сопряжения с волоконно-оптическими сетями и широкополосных коммутаторов. Эти устройства также могут стать основой для компьютерных соединений.
В области сенсорики программируемая интегральная фотоника может привести к созданию общего класса программируемых измерительных устройств. Они могут быть успешно интегрированы в качестве составных элементов в будущий Интернет вещей
Вот несколько преимуществ фотонных микросхем по сравнению с кремниевыми микросхемами:
Высокая скорость передачи данных: Интегральная фотоника позволяет передавать данные на гораздо большие расстояния и со значительно более высокой скоростью, чем кремниевые микросхемы. Это особенно полезно для коммуникаций на большие расстояния или при работе с огромными объемами данных.
Низкое потребление энергии: Поскольку световые сигналы имеют намного меньшую диссипацию энергии по сравнению с электрическими, фотонные микросхемы потребляет гораздо меньше энергии при выполнении вычислений или передаче данных. Это может быть особенно важным для устройств, работающих от батарей или требующих минимального потребления энергии.
Большая пропускная способность: фотонные микросхемы обеспечивает большую пропускную способность данных, что означает возможность передавать и обрабатывать гораздо большие объемы информации одновременно. Это особенно полезно в сферах высокоскоростной связи, облачных вычислений и научных исследований.
Меньше электромагнитных помех: Световые сигналы не подвержены электрическим или магнитным помехам, которые могут возникать в кремниевых микросхемах. Это позволяет более надежно передавать данные без потерь или искажений из-за воздействия внешних факторов.
Использование новых материалов: Интегральная фотоника открывает двери для использования новых материалов со свойствами оптики, таких как наночастицы или квантовые точки. Это может привести к развитию более компактных устройств с расширенными функциональными возможностями.
В целом, интегральная фотоника представляет собой перспективную технологию со значительными преимуществами в компактности, скорости передачи данных и широких возможностей применения.
Актуальное состояние и ближайшие перспективы
Международная исследовательская группа под руководством профессора Павлоса Лагудакиса из лаборатории гибридной фотоники Сколтеха создала чрезвычайно энергоэффективный оптический переключатель, который не требует охлаждения и демонстрирует скорость около 1 триллиона операций в секунду, что примерно в 100-1000 раз быстрее современных высококачественных коммерческих транзисторов.
Фотонные транзисторы имеют потенциал быть значительно более эффективными и быстрыми по сравнению с традиционными коммерческими транзисторами. Это связано с использованием фотопроводимости и контролем пропускания света для управления потоком носителей заряда.
Хотя путь предстоит долгий, но перспективы фотоники выглядит многообещающе. По сути, фотоника представляет собой аналог электроники, только вместо электронов используются кванты электромагнитного поля – фотоны.
Процессы в фотонных микросхемах проходят с существенно меньшим энергопотреблением, а значит бо?льшим потенциалом миниатюризации.
Новый фотонный переключатель может выступать в роли транзистора или устройства передачи данных на оптических каналах связи (на порядок увеличивая пропускную способность канала). Он также может служить в качестве усилителя, повышая интенсивность входящего лазерного луча в 23 000 раз, сказано в научной работе.
Современные серийные решения на базе фотонных микросхем
На сегодняшний день на рынке доступны различные серийные микросхемы, основанные на технологиях интегральной фотоники. Некоторые из них включают:
Интегральные оптические модули (ИОМ): компактные устройства, объединяющие несколько оптических компонентов, таких как лазеры, модуляторы и фотоприемники, на одном чипе. Они широко используются в оптической связи для передачи данных с высокой скоростью.
Интегрально-оптические коммутаторы: микросхемы, которые позволяют переключать или маршрутизировать оптический сигнал по различным каналам или портам. Они обладают высоким быстродействием и эффективностью и применяются в системах связи и коммутации данных.
Фотонные процессоры: микросхемы, способные выполнять операции обработки сигнала непосредственно в оптическом домене без конвертирования его в электрическую форму. Они имеют большой потенциал для обработки больших объемов данных с высокой скоростью и применяются в областях, таких как оптическая коммуникация и вычислительные системы.
Интегрально-оптические фильтры: микросхемы, которые позволяют выбирать определенный диапазон частот или длины волны из оптического спектра. Они используются в различных приложениях, включая спектроскопию, медицинскую диагностику и светофорную сигнализацию.
Фотонные усилители: Это микросхемы, которые усиливают слабый оптический сигнал без его конвертирования в электрическую форму. Они широко применяются в оптической связи для компенсации потерь на расстояниях передачи.
Развитие этой технологии продолжается, и ожидается появление новых продуктов и решений для различных приложений в будущем.
Крупные производители Интегральных оптических модулей (ИОМ)
Finisar: Finisar является одним из крупнейших производителей оптических компонентов и модулей, включая ИОМ. Они предлагают широкий спектр продуктов для различных приложений в сферах связи, хранения данных и промышленности.
Lumentum: Lumentum также является крупным поставщиком оптических технологий и продуктов, включая ИОМ. Они предоставляют инновационные решения для области связи, лидара, медицины и других отраслей.
NeoPhotonics: NeoPhotonics специализируется на разработке и производстве высокоскоростных оптических компонентов и модулей, включая ИОМ. Они предлагают широкий ассортимент продукции для передачи данных на длинах волн от 100 Гб/с до 400 Гб/с.
Oclaro: Oclaro также является лидером на рынке оптической коммуникации и предоставляет различные ИОМ для широкого спектра приложений. Они известны своими прецизионными оптическими компонентами и модулями высокой производительности.
Broadcom: Broadcom является крупнейшим в мире поставщиком полупроводниковых решений, включая интегральную фотонику. Они предлагают различные ИОМ для использования в сетях передачи данных и других коммуникационных системах.
Существуют также ряд других компаний, которые предоставляют подобные продукты и технологии.
Finisar предлагает ряд изделий высокой степени интеграции на базе кристалла интегрального оптического модуля (ИОМ). Некоторые из них включают:
Волоконные трансиверы: Finisar производит различные типы волоконных трансиверов, такие как SFP, QSFP и CFP модули, которые объединяют функции передатчика и приемника в одном компактном корпусе.
Коммутаторы: Фирма также предлагает коммутаторы с высокой плотностью портов на основе ИОМ. Эти коммутаторы обеспечивают быстрый и эффективный обмен данными между множеством устройств или серверов.
Активные оптические кабели: Finisar производит активные оптические кабели (AOC) с использованием ИОМ для высокоскоростной передачи данных на коротких расстояниях. Это позволяет достичь более низкой задержки и потерь сигнала по сравнению со стандартными медными кабелями.
Пассивная оптика: Организация предлагает различные пассивные оптические компоненты, такие как сплиттеры и световодные делители на базе ИОМ. Эти компоненты позволяют разделить или комбинировать оптический сигнал без потери качества.
Модули передачи данных: Finisar также производит модули передачи данных для высокоскоростной связи внутри центров обработки данных (ЦОД) и других сетевых приложений. Эти модули основаны на ИОМ и предоставляют быструю и надежную передачу информации.
Lumentum является ведущим производителем изделий высокой степени интеграции на базе кристалла интегрального оптического модуля (ИОМ).
Волоконные трансиверы: Lumentum предлагает широкий спектр волоконных трансиверов, таких как SFP, QSFP и CFP модули. Они обеспечивают передачу данных на высоких скоростях и поддерживают различные протоколы связи.
Туннельные диоды: Компания производит ИОМ с использованием туннельных диодов для генерации мощных оптических импульсов или формирования лазерных пучков с узким спектром.
Лазерные модули: Lumentum разрабатывает и поставляет лазерные модули различной мощности, работающие в видимом или ближнем ИК-диапазонах. Эти модули используются во многих приложениях, таких как связь на большие расстояния или точное позиционирование.
Фотоприемники: Компания предлагает фотоприемники на базе ИОМ, которые преобразуют оптический сигнал в электрический. Они обладают высокой чувствительностью и широким диапазоном рабочих частот.
Коммутационные матрицы: Lumentum также производит коммутационные матрицы на основе ИОМ для управления и маршрутизации оптического трафика в сетях связи или центрах обработки данных.
NeoPhotonics является ведущим производителем изделий высокой степени интеграции на базе кристалла интегрального оптического модуля (ИОМ).
Интегральные оптические трансиверы: NeoPhotonics предлагает широкий спектр оптических трансиверов, таких как SFP, QSFP и CFP модули. Они обладают высокой плотностью интеграции и поддерживают передачу данных на высоких скоростях.
Когерентные приемо-передатчики: Компания разрабатывает когерентные приемо-передатчики на базе ИОМ для использования в системах связи с более сложными формами модуляции. Эти устройства обеспечивают высокую пропускную способность и дальность передачи.
Модули переменных амплитудных решеточных фильтров (VLC): NeoPhotonics производит ИОМ с VLC фильтрами для многовариантной передачи сигнала по одному каналу связи. Это позволяет повышать эффективность использования оптического спектра.
Интегральные волноводы: Компания предлагает различные типы интегральных волноводов на базе ИОМ, такие как сгибаемые или многослойные структуры. Это позволяет эффективно управлять и направлять оптический сигнал.
Oclaro является ведущим производителем изделий высокой степени интеграции на базе кристалла интегрального оптического модуля (ИОМ).
Интегральные оптические трансиверы: Oclaro предлагает широкий спектр оптических трансиверов, таких как SFP, QSFP и CFP модули. Они обладают высокой плотностью интеграции и поддерживают передачу данных на высоких скоростях.
Когерентные приемо-передатчики: Компания разрабатывает когерентные приемо-передатчики на базе ИОМ для использования в системах связи с более сложными формами модуляции. Эти устройства обеспечивают высокую пропускную способность и дальность передачи.
Модули переменных амплитудных решеточных фильтров (VLC): Oclaro производит ИОМ с VLC фильтрами для многовариантной передачи сигнала по одному каналу связи. Это позволяет повышать эффективность использования оптического спектра.
Интегральные волноводы: Компания предлагает различные типы интегральных волноводов на базе ИОМ, такие как сгибаемые или многослойные структуры. Это позволяет эффективно управлять и направлять оптический сигнал.
Broadcom является ведущим производителем изделий высокой степени интеграции на базе кристалла интегрального оптического модуля (ИОМ).
Оптические трансиверы: Broadcom предлагает широкий спектр оптических трансиверов, таких как SFP, QSFP и CFP модули. Эти устройства обладают высокой плотностью интеграции и обеспечивают передачу данных на высоких скоростях.
Когерентные приемо-передатчики: Компания разрабатывает когерентные приемо-передатчики на базе ИОМ для использования в системах связи с более сложными формами модуляции. Это позволяет достигать высокой пропускной способности и дальности передачи.
100G/400G PAM4 модули: Broadcom выпускает ИОМ с поддержкой PAM4 (четверичное амплитудно-манифестное кодирование) для передачи данных со скоростями 100 Гбит/с и 400 Гбит/с. Это позволяет повышать эффективность использования оптического спектра.
Интегральные волноводы: Компания предлагает различные типы интегральных волноводов на базе ИОМ, такие как сгибаемые или многослойные структуры. Это позволяет эффективно управлять и направлять оптический сигнал.
Современные устройства на базе ОИМ
Оптические трансиверы – это устройства, которые комбинируют функции оптического передатчика и приемника в одном модуле. Они являются ключевыми компонентами для передачи данных по оптоволокнам в сетях связи.
Принцип работы оптических трансиверов основан на преобразовании электрического сигнала в оптический и обратно. Вот основные этапы работы:
Преобразование электрического сигнала: Оптический трансивер получает электрический сигнал от активного элемента (например, микросхемы или процессора) через электрический интерфейс. Это может быть стандартный интерфейс Ethernet, InfiniBand или другой протокол связи.
Модуляция света: Электрический сигнал затем подается на лазерный диод или полупроводниковый лазер внутри оптического трансивера. Лазер генерирует когерентную световую волну, которая представляет собой носитель информации.
Предварительная обработка и усиление: Оптический сигнал проходит через различные оптические компоненты, такие как модуляторы и усилители, чтобы повысить его мощность и качество передачи.
Передача по оптоволокну: Интенсивность световой волны изменяется в соответствии с электрическим сигналом данных. Оптическая волна затем направляется на оптоволокно, где она распространяется на большие расстояния без значительных потерь.
Принятие и декодирование: На другом конце оптоволоконного кабеля приемник трансивера принимает световую волну и превращает ее обратно в электрический сигнал. С помощью фотоприемника (фотодиода или фотодетектора) свет преобразуется в электричество.
Обработка полученного сигнала: Электрический сигнал подвергается дальнейшей обработке для удаления шума, увеличения амплитуды или регенерации данных перед отправкой на активное устройство назначения.
Описанный выше процесс повторяется для каждого бита данных, передаваемого по оптоволокну. Оптические трансиверы позволяют достичь высоких скоростей передачи данных и обеспечить надежную связь в сетях связи.
Когерентные приемо-передатчики – это устройства, используемые в оптической связи для передачи и приема сигналов по оптоволокну с использованием техники когерентного детектирования. Они позволяют достичь высоких скоростей передачи данных и обеспечить более эффективное использование пропускной способности оптоволоконных каналов.
Принцип работы когерентных приемо-передатчиков основан на модуляции и детектировании фазы и амплитуды оптического сигнала. Вот основные этапы работы:
Генерация лазера: Когерентный приемо-передатчик содержит генератор лазера, который создает стабильную когерентную световую волну нужной частоты и мощности.
Модуляция света: Электрический сигнал данных подается на модулятор, который изменяет фазу или амплитуду создаваемой лазером оптической волны в соответствии с передаваемыми данными.
Усиление и расширение спектра: Однопрочностная (single-sideband) моделировка использует так называемый амплитудный манифест. После модуляции сигнала оптическая волна проходит через усилитель для повышения его мощности и затем подвергается расширению спектра, что позволяет более эффективно использовать пропускную способность канала.
Передача по оптоволокну: Измененная оптическая волна направляется на оптоволоконный кабель, где она передается на большие расстояния без значительных потерь.
Принимаемый сигнал: На другом конце оптоволоконного кабеля приемник трансивера получает измененную световую волну и использует фотодиод или фотодетектор для детектирования ее фазы и амплитуды.
Когерентное детектирование: Используя специальные методы обработки сигнала, такие как гомодинная демодуляция или цифровая обработка сигнала (DSP), полученный оптический сигнал превращается в электрический формат данных для последующей обработки.
Обработка и извлечение информации: Электрический сигнал проходит через различные этапы обработки, включая фильтрацию, усиление и декодирование данных. Затем информация извлекается и передается на активное устройство назначения.
Когерентные приемо-передатчики позволяют достичь высокой скорости передачи данных, а также обеспечить более эффективное использование пропускной способности оптоволоконных каналов благодаря возможности детектирования и использования фазовой информации сигнала.
Все книги на сайте предоставены для ознакомления и защищены авторским правом