Владимир Костин "Теоретические основы инвестиций в акции, облигации и стандартные опционы"

В монографии детально рассматривается современная портфельная теория, которая разработана Г.Марковицем, дополнена У.Шарпом и др. С использованием методов высшей математики и теории вероятностей проводится критический анализ основных положений портфельной теории. Анализируются современные принципы, подходы и методы оценки ценных бумаг.Описываются специфические особенности стратегического управления инвестициями в ценные бумаги.Предлагается альтернативный подход по сопоставлению ценных бумаг и формированию оптимального портфеля активов. Разработан математический аппарат оценки стандартных опционов.Книга рекомендуется в качестве учебного пособия для студентов экономических вузов, аспирантов, преподавателей и как методическое руководство для участников фондового рынка.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 30.12.2023

– длина мнимой полуоси гиперболы.

В качестве примера на рис. 1.3 представлены достижимые множества портфелей, содержащих два рискованных актива и , для коэффициентов корреляции , и .

Рис. 1.3. Достижимые множества портфелей, содержащих два рискованных актива и , для коэффициентов корреляции , и (зависимости 1, 2 и 3 соответственно)

Условия и ограничивают гиперболу точками, которые соответствуют портфелям с одним активом (, , , ) или (, , , ).

Анализ рис. 1.3 показывает, что достижимое множество портфелей, содержащих два рискованных актива, при располагается на дуге гиперболы (кривая 1) и при – на дуге гиперболы (кривая 2).

Портфели, соответствующие вершинам гипербол и , обладают минимально возможными значениями СКО доходностей из достижимых множеств и соответственно, причём наименьшее СКО доходности имеет место при .

В частном случае, когда активы и представляют собой совокупности ценных бумаг одного и того же эмитента, но приобретённых по разной цене (по этой причине активы отличаются МО и СКО доходности), коэффициент корреляции доходностей активов равен единице, т.е. . Тогда выражение для СКО доходности портфеля преобразуется к виду

и достижимое множество вырождается в отрезок прямой (на рис. 1.3 прямая 3). Уравнение отрезка прямой имеет вид

где – тангенс угла наклона прямой; – свободный член линейной зависимости.

Координаты вершины гиперболы и соответствующие объёмы инвестирования в активы и можно определить и методом выделения экстремума функции с использованием частных производных.

Принимая во внимание, что , преобразуем выражение для СКО доходности портфеля к виду

Для определения минимального значения СКО доходности актива приравняем к нулю производную

В результате решения данного уравнения получаем соотношения для расчёта объёмов инвестирования в активы и , при которых достигается минимальное значение СКО доходности актива

После подстановки выражений (1.18) и (1.19) для и в соотношения (1.15) и (1.16) получаем формулы для расчёта минимального значения СКО доходности , а также соответствующего ему значения МО доходности . Как и следовало ожидать, минимальным значением СКО доходности обладает портфель , поскольку , а .

Таким образом, два рискованных актива и порождают достижимое множество портфелей, которое в графической интерпретации располагается на дуге гиперболы , где точка является вершиной гиперболы.

Достижимое множество портфелей, содержащих три рискованных актива. Предположим, что портфель содержит три рискованных актива , и . По аналогии с соотношениями (1.15) и (1.16) получаем

где , и – относительные объёмы инвестирования в активы , и соответственно; , и – МО доходностей активов , и соответственно; , и – СКО доходностей активов , и соответственно; , и – коэффициенты корреляции между доходностями активов и , и , и соответственно.

На конкретном примере рассмотрим особенности построения достижимого множества портфелей, которые содержат три актива , и с коррелированными доходностями и параметрами, приведенными в табл. 1.2.

Таблица 1.2

Параметры активов , и

Активы

Параметры

активов

А

А

А

15

10

5

0,14

0,13

0,12

На рис. 1.4 представлено достижимое множество портфелей для всех возможных сочетаний относительных объёмов инвестирования , и в каждый актив , и . Для наглядности внутренняя область достижимого множества заполнена кривыми, которые построены при фиксированных значениях .

Рис. 1.4. Достижимое множество портфелей , которые содержат три актива , и

Анализ рис.1.4 показывает, что внешняя граница и внутренняя область достижимого множества формируется бесконечным множеством дуг гипербол, сплошь заполняющих фигуру . Закономерности заполнения данной фигуры дугами гипербол, которые показаны пунктирными линиями, наглядно демонстрируется на рис. 1.4.

Внутренняя область достижимого множества содержит точки пересечения дуг гипербол. Это означает, что портфели с одинаковыми значениями МО доходности и СКО доходности могут быть сформированы несколькими вариантами объёмов инвестирования , и .

Внешняя граница достижимого множества по форме напоминает зонт [1] и состоит из пилообразной части и выпуклой части .

Пилообразная часть внешней границы достижимого множества формируется точками (портфелями, содержащими только один актив) , и , а также дугами гипербол с вершинами , и , попарно соединяющими эти точки (портфелями, содержащими только два актива):

дугой , которая формируется при ;

дугой , которая формируется при ;

дугой , которая формируется при .

Характерной особенностью выпуклой части достижимого множества является наличие вершины (, ). Портфель, соответствующий точке , обладает минимальным значением СКО доходности из всего достижимого множества, что достигается при объёмах инвестирования в активы , , .

Следует отметить, что СКО доходности портфеля заметно отличается в меньшую сторону от СКО доходностей исходных активов , и . То есть доходность портфеля является наиболее устойчивой из всего допустимого множества портфелей (в [1] портфель называют наименее рискованным, так как СКО доходности ассоциируется с риском).

Координаты вершины выпуклой части достижимого множества и соответствующие объёмы инвестирования в активы , и можно определить не только численными методами, но методом выделения экстремума функции с использованием частных производных.

Учитывая, что преобразуем выражение для дисперсии доходности портфеля к виду

Для определения минимального значения СКО доходности портфеля, содержащего три актива, решим систему уравнений

В результате получаем соотношения для расчёта объёмов инвестирования в активы , и , при которых достигается минимум СКО доходности портфеля

где

Рассмотренный подход позволяет определить координаты и вершины достижимого множества , которая соответствует портфелю с минимальным значением СКО доходности.

Аналогичный подход может быть использован для расчёта объёмов инвестирования в активы , и , при которых достигается минимум СКО доходности портфеля для заданного значения МО доходности портфеля . Другими словами, представляется возможным вывести соотношения для расчёта границы выпуклой части достижимого множества.

Учитывая, что и , получаем

Такое представление объёмов инвестирования и позволяет преобразовать выражение для дисперсии доходности портфеля как функцию объёма инвестирования

Для определения минимального значения СКО доходности портфеля при заданном значении МО доходности портфеля необходимо решить уравнение

В результате получаем соотношения для расчёта объёмов инвестирования в активы , и

где:

Анализ полученных соотношений показывает, во–первых, объёмы инвестирования , и прямо пропорциональны МО доходности портфеля , следовательно, граница выпуклой части достижимого множества является гиперболой. Во–вторых, условия , и ограничивают данную гиперболу. Координаты точек и , которые ограничивают гиперболу, могут быть определены из условий , , На рис. 1.4 такими точками являются , , и , , , которые соответствуют портфелям с двумя активами. В–третьих, граница выпуклой части достижимого множества формируется:

на участке – дугой гиперболы , т.е. двумя активами и ;

на участке – дугой гиперболы , т.е. тремя активами , и ;

на участке – дугой гиперболы , т.е. двумя активами и .

Таким образом, три рискованных актива , и порождают достижимое множество портфелей, которое в графической интерпретации располагается на плоскости в виде сложной фигуры , где точка является вершиной достижимого множества. Граница достижимого множества формируется дугами трёх гипербол.

Достижимое множество портфелей, содержащих рискованных активов. Как следует из предыдущего примера, из–за громоздких формул уже при для определения достижимого множества целесообразно использовать исключительно численные методы.

На конкретном примере рассмотрим особенности достижимого множества портфелей, которые содержат десять активов () с коррелированными доходностями и параметрами, приведенными в табл. 1.3.

Таблица 1.3

Параметры активов

Активы

Параметры

активов

Все книги на сайте предоставены для ознакомления и защищены авторским правом