ISBN :
Возрастное ограничение : 12
Дата обновления : 04.01.2024
.
Оба указанных выражения для времени в движущейся системе координат могут быть выведены только с помощью использования факта существования инвариантного интервала, имеющего одну и ту же длину в сравниваемых системах. При этом последнее из них не ограничивает скорость тела скоростью света в вакууме.
Существуют и иные, базирующиеся на понятии об инвариантном времени собственном, способы определения взаимозависимости времен движущейся и неподвижной четырехмерных систем координат, основанные на использовании метода неопределенных коэффициентов (индефинитных преобразований), более известного как преобразования Лоренца ([5], §1):
,
Но и для этих способов применение разных видов инвариантного времени собственного
и
, для которых
, а
, дает те же самые результаты по соотношению хода часов в разных системах координат, что были определены выше
и
. Как видим, «пространственно-временные» трансляции в результате проведенных преобразований свелись только к временным, а не пространственно- временным трансляциям, как и следовало этого ожидать при принятии условия, что один из наблюдателей видит тело в состоянии покоя (речь конечно же идет о трехмерном пространстве). Причем здесь неподвижной считается система координат, в которой отсутствует движение произвольно выбранной точки в трехмерном подпространстве, но есть движение по временной координате четырехмерного пространства.
Учитывая разночтения в процедуре определения какой из наблюдателей является неподвижным, а какой движущимся, необходимо дополнительно рассмотреть вопрос об определении статуса неподвижности четырехмерных систем отсчета.
Классические преобразования координат, что Галилея, что Лоренца, основаны на сравнении расстояний до произвольно выбранной точки от центров сравниваемых инерциальных систем отсчета. При этом одна из систем координат обязательно должна быть неподвижной относительно указанной точки. Данное обстоятельство позволяет именно в этой системе осуществлять экспериментальную проверку и измерение величины расстояния между указанной точкой и центром системы координат. В другой инерциальной системе координат это расстояние можно вычислить с использованием знания о величине скорости света, величине измеренного в неподвижной системе координат расстояния и скорости относительного движения центров двух систем отсчета. Введение понятия об инвариантном интервале, или времени собственном, как это принято в современной физике, вносит свои коррективы в формулировку ставящейся задачи, поскольку нам необходимо определять не соответствие координат разных систем отсчета, а найти связь между изменениями четырех независимых переменных в разных системах отсчета. При этом мы имеем две четырехмерные системы координат, каждая из которых является неподвижной относительно движущейся произвольно выбранной точки. В одной из систем это движение осуществляется как по временной, так и пространственным координатам, в то время как в другой – только по временной координате. Причем в последней из этих систем движение точки по временной координате согласовано с движением этой же точки по всем четырем координатам в первой из указанных систем отсчета. В общепринятой в настоящее время форме математического обоснования специальной теории относительности для сравнения различных систем координат используют пару идентичных часов, устанавливаемых в центре неподвижной системы координат и на движущемся объекте, полагая, что последние использует наблюдатель, находящийся в системе, где движение тела происходит только по временной координате. Однако такой подход может иметь место только в случае трехмерных, а не четырехмерных систем координат, как это постулируется в специальной теории относительности. В действительности в полном соответствии со специальной теорией относительности мы имеем одни единственные часы, установленные в общем для двух развернутых относительно друг друга четырехмерных систем координат. При этом необходимо ввести условие, что часы в центре системы, где движение тела происходит только по временной координате, показывают то же самое время, что и часы, размещенные в трехмерном пространстве на движущемся теле. Но для описания механического движения тела воспользоваться можно только часами, где это движение осуществляется, то есть в системе, где есть движение по всем координатам четырехмерной системы отсчета. Для часов на наблюдаемом в трехмерном пространстве теле такое движение отсутствует – их показания совпадают с показаниями часов, размещенных в центре системы, где есть движение тела только по временной координате. И для того, чтобы сравнивать показания одних и тех же часов с помощью времени, используемого в трехмерном пространстве, необходимо ввести понятие об инвариантном интервале для различных четырехмерных систем отсчета. При этом базовой (неподвижной) системой может быть только такая, где можно экспериментально определить координатное положение тела и параметры его трехмерного движения. И тогда правомерным следует признать подход к определению статуса неподвижной системы координат, использованный в [5], а не в [8]. В этом случае связь между различными определениями одного и того же четырехмерного инвариантного интервала выражается не через сравнение описаний длины интервала с помощью определения его длины через изменение координат двух четырехмерных систем координат, а через связь для трехмерного пространства между показаниями часов неподвижного наблюдателя и расположенных на движущемся теле часов либо как как
, либо как
. Данные выражения легко получить и без рассмотренных ранее математических выкладок, путем простого сравнения метрик (правил определения расстояния между точками) двух различных четырехмерных систем координат, в одной из которых наблюдается движение тела как в трехмерном подпространстве, так и по временной координате, а в другой – только по временной координате. В этом случае на основании инвариантности времени собственного и разных метрик можно записать
, c=1. А так как начальным условием является
, то
. При этом ни о каких иных пространственных преобразованиях не может быть и речи. Более того, при таких видах преобразований построенные нами четырехмерные системы координат будут полностью удовлетворять принципу однородности и изотропности пространства, в то время как именно изотропности пространства одна из систем координат при преобразованиях Лоренца не соответствует.
Сам же переход к сравнению изменений движений тела в четырехмерном пространстве вместо сравнения инерциальных систем примечателен тем, что один единственный наблюдатель, учитывая свойство тождественности по определению инерциальных систем координат и первый постулат специальной теории относительности, не нуждается во втором движущемся относительно него наблюдателе, чтобы определить ход часов у этого наблюдателя. Вполне достаточно использовать собственные часы и определять влияние конечности скорости света на результаты его наблюдения за движущимся объектом на основании их показаний. Таким образом, задача преобразования координат может быть заменена задачей определения особенностей наблюдения неподвижным наблюдателем движущегося объекта при условии конечности скорости света. Для решения такой задачи принципиально необходимо, чтобы соблюдались два положенных в основу специальной теории относительности условия: о тождественности (неотличимости) хода «внутренних» часов в любой из сравниваемых четырехмерных систем координат и о зависимости при переходе к трехмерному пространству хода движущихся часов от хода часов неподвижного наблюдателя и изменения положения тела в трехмерном пространстве. И для такой задачи нет необходимости соблюдения одновременности происходящих с телом изменений положения с показаниями часов у наблюдателя, а также начального нахождения тела в месте расположения неподвижного наблюдателя. Данные ограничения необходимы только в случае сравнения абсолютных значений координат, а не их бесконечно малых изменений. Данное обстоятельство обусловлено как однородностью времени, так и тем, что мы имеем дело с инерциальным движением тела в трехмерном пространстве с постоянной скоростью.
Из-за конечности скорости света кроме эффекта изменения масштаба времени существует также эффект отставания показаний часов на удаленном от наблюдателя объекте, но этот эффект из-за своей очевидности в специальной теории относительности и в данной книге дополнительно не рассматривается.
Подчеркнем, что Альберт Эйнштейн выбрал лишь одну из возможных форм преобразования координат, аналогично которой сконструировал инвариантные преобразования энергии и импульса в различных инерциальных системах координат. Данный прием нахождения инвариантных выражений (групп Лоренца) был распространен на все физические законы и получил в дальнейшем признание в виде принципов лоренц-инвариантности и лоренц-ковариантности. Но для таких соотношений невозможно применить указанную выше альтернативную форму преобразований, так как при этом теряется свойство инвариантности. Казалось бы, выбор единственно возможной формы инвариантного интервала очевиден, но так ли это?
Указанные выше определения времени собственного получены в результате использования простых геометрических правил для прямоугольных систем координат и требуют постулирования постоянства скорости света в любых системах отсчета. И предопределены они только тем обстоятельством, что скорость света является величиной конечной. Однако это сказывается не на характере протекания физических процессов, а на их визуальном исследовании. Принцип же лоренц-ковариантности считается проявлением общего закона природы, который не зависит от того, наблюдается или нет какой-либо физический процесс.
К каким же последствиям приводит возведение в принцип (закон природы) лоренц-инвариантных преобразований?
В соответствии с принципом эквивалентности (первый постулат специальной теории относительности) любая инерциальная система имеет право считаться лабораторной, то есть быть неподвижной системой координат. Более того, все лабораторные инерциальные системы должны быть неразличимыми. В противном случае существовала бы единственная выделенная лабораторная система координат, что противоречит первому постулату специальной теории относительности. Следовательно, длительность любого физического процесса должна быть той же самой во всех неподвижных инерциальных системах координат. В то же самое время, если какая-либо координатная система является лабораторной, длительность ней какого-либо процесса должна отличаться от сравниваемой с ней длительности этого процесса в других инерциальных (движущихся) системах с точки зрения неподвижного наблюдателя. При этом длительность любого процесса замеряется с помощью длительности особого эталонного процесса – одной секунды.
По определению, одна секунда – это интервал времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, находящегося в покое при 0°К. И данное определение является однозначно справедливым в любой лабораторной системе координат.
количеству периодов выбранного излучения является объективной и применимой как для установления величины одной секунды, так и для определения длительности любых иных процессов.
У нас имеются две четырехмерные системы координат X и X’, в каждой из которых одновременно наблюдается процесс движения из центров указанных систем одного и того же тела. Под термином «наблюдение за движением» понимается фиксация изменения положения тела относительно центра системы координат, осуществляемый, например, по изменению гравитационного или электрического потенциала поля, создаваемого телом, а не визуальное наблюдение. В последнем случае из-за конечности скорости света пришлось бы ограничиться только досветовыми скоростями изменения положения тела. При наблюдении движения обязательным является условие инвариантности интервала Эйнштейна, то есть равенства пройденных телом путей в каждой из систем координат. В системе X длина пути задается как расстояние от центра системы до точки с координатами
, а в системе X’ – до точки с координатой
. Координаты
и
можно выразить через независимые в трехмерном пространстве параметры t и t’ соответственно, а расстояние
через произведение
. Тогда в соответствии со специальной теорией относительности можно записать:
, и
, причем
. Отсюда прямо следует, что
. Но, поскольку
Все книги на сайте предоставены для ознакомления и защищены авторским правом