Джейд Картер "Искусственный интеллект. Основные понятия"

Книга представляет собой введение в мир искусственного интеллекта (ИИ). В ней рассматриваются ключевые концепции, методы и технологии, используемые в области ИИ, начиная от базовых алгоритмов машинного обучения и нейронных сетей, и заканчивая более сложными темами, такими как глубокое обучение и рекуррентные нейронные сети. Автор пошагово объясняют основные принципы работы различных подходов к ИИ и предоставляют читателям практические примеры и задания для углубления понимания материала. Эта книга предназначена как для студентов и исследователей, интересующихся темой ИИ, так и для практикующих специалистов, желающих расширить свои знания в этой области.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 22.02.2024


for neighbor in neighbors:

G.add_edge(node, neighbor)

# Отображение графа

pos = nx.spring_layout(G) # Положение вершин на графе

nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=1000)

# Выделение кратчайшего пути

shortest_path_edges = [(shortest_path[i], shortest_path[i + 1]) for i in range(len(shortest_path) – 1)]

nx.draw_networkx_edges(G, pos, edgelist=shortest_path_edges, width=2, edge_color='red')

plt.title('Граф дорожной сети с кратчайшим путем от {} к {}'.format(start, end))

plt.show()

```

Этот код создает граф дорожной сети на основе словаря смежности, а затем использует алгоритм BFS для поиска кратчайшего пути от начальной до конечной точки. Результат отображается с помощью библиотеки `matplotlib`. Визуализируется весь граф, а кратчайший путь отображается красным цветом.

Эти примеры демонстрируют, как каждый из методов поиска может быть использован для решения различных задач. DFS подходит для задач, где важно найти любой возможный путь, в то время как BFS используется, когда необходимо найти кратчайший путь или оптимальное решение.

Оба этих метода имеют свои преимущества и недостатки, и выбор конкретного метода зависит от характеристик задачи и требуемых критериев оптимальности. Кроме того, существуют и другие методы поиска, такие как алгоритмы A* и Dijkstra, которые также находят широкое применение в различных областях искусственного интеллекта и информатики.

Оптимизация

Оптимизационные методы в искусственном интеллекте играют ключевую роль в нахождении наилучших решений для сложных задач с определенными ограничениями или целями. Эти методы могут быть применены как к задачам однокритериальной оптимизации, где требуется найти оптимальное решение для одного критерия, так и к многокритериальной оптимизации, где необходимо учитывать несколько конфликтующих целей или ограничений одновременно.

Генетические алгоритмы (ГА) представляют собой мощный класс оптимизационных методов, вдохновленных принципами естественного отбора и генетики. Они являются итеративными алгоритмами, которые эмулируют эволюцию популяции, где каждый кандидат представляет потенциальное решение задачи. На каждой итерации алгоритма создается новое поколение кандидатов путем применения операторов мутации, скрещивания и отбора к родительской популяции.

В начале работы ГА создает случайную популяцию кандидатов, которая представляет собой начальные решения задачи. Затем происходит итеративный процесс, на каждом этапе которого осуществляется оценка приспособленности каждого кандидата в соответствии с целевой функцией. Кандидаты, которые лучше соответствуют поставленным критериям, имеют больший шанс выживания и передачи своих генетических характеристик следующему поколению.

Оператор мутации случайным образом изменяет генетическое представление кандидата, что приводит к разнообразию в популяции и предотвращает застревание в локальных оптимумах. Скрещивание позволяет создавать новых кандидатов путем комбинации генетической информации от двух родителей, что позволяет наследовать лучшие характеристики обоих. Оператор отбора определяет, какие кандидаты будут переходить в следующее поколение на основе их приспособленности, при этом более приспособленные кандидаты имеют больший шанс быть выбранными.

Этот процесс продолжается до достижения условия останова, такого как достижение максимального количества итераций или достижение желаемого уровня приспособленности в популяции. Генетические алгоритмы широко применяются в различных областях, таких как оптимизация функций, настройка параметров моделей, решение задач комбинаторной оптимизации и многие другие.

Допустим, у нас есть задача оптимизации раскроя материала. Для простоты представим, что у нас есть прямоугольный лист материала определенного размера, и нам необходимо распилить его на прямоугольные заготовки определенных размеров таким образом, чтобы использовать материал максимально эффективно и минимизировать отходы.

Для решения этой задачи мы можем применить генетический алгоритм. Каждый кандидат в популяции представляет собой набор прямоугольных заготовок, расположенных на листе материала. Мы можем использовать операторы мутации и скрещивания для создания новых комбинаций заготовок, а также оператор отбора для выбора лучших решений.

Целевая функция может оценивать эффективность каждого раскроя, например, как отношение площади заготовок к общей площади листа материала. Генетический алгоритм будет итеративно искать комбинации заготовок, которые максимизируют данную целевую функцию, тем самым находя оптимальное решение для задачи раскроя материала.

Для визуализации задачи оптимизации раскроя материала с помощью генетического алгоритма мы можем использовать библиотеку `matplotlib` для создания графического представления листа материала и заготовок. Ниже приведен пример простого кода на Python, демонстрирующего эту задачу:

```python

import matplotlib.pyplot as plt

import numpy as np

# Функция для визуализации раскроя материала

def visualize_cutting(material_size, cut_pieces):

fig, ax = plt.subplots()

ax.set_aspect('equal')

# Визуализация листа материала

ax.add_patch(plt.Rectangle((0, 0), material_size[0], material_size[1], linewidth=1, edgecolor='black', facecolor='none'))

# Визуализация каждой заготовки

for piece in cut_pieces:

ax.add_patch(plt.Rectangle((piece[0], piece[1]), piece[2], piece[3], linewidth=1, edgecolor='red', facecolor='none'))

plt.xlim(0, material_size[0])

plt.ylim(0, material_size[1])

plt.gca().set_aspect('equal', adjustable='box')

plt.xlabel('Width')

plt.ylabel('Height')

plt.title('Material Cutting Optimization')

plt.grid(True)

plt.show()

# Пример использования функции для визуализации

material_size = (10, 10) # Размеры листа материала

cut_pieces = [(1, 1, 3, 2), (5, 2, 4, 3), (2, 6, 2, 2)] # Координаты и размеры заготовок

visualize_cutting(material_size, cut_pieces)

```

На результате видим визуализацию листа материала и расположенных на нем заготовок. Лист материала представлен черным прямоугольником, который указывает на границы доступного пространства для раскроя. Каждая заготовка представлена красным прямоугольником с указанием ее координат и размеров на листе материала. Эта визуализация помогает наглядно представить, каким образом происходит раскрой материала и как заготовки размещаются на листе с учетом ограничений.

Этот код создает графическое представление листа материала и расположенных на нем заготовок. Лист материала обозначен черным прямоугольником, а каждая заготовка – красным. Вы можете изменить размеры листа материала и расположение заготовок, чтобы увидеть, как изменяется визуализация.

Алгоритмы оптимизации с искусственным иммунитетом (англ. Artificial Immune System, AIS) представляют собой компьютерные алгоритмы, вдохновленные работой естественной иммунной системы. Они применяют принципы иммунного ответа, такие как распознавание и уничтожение антигенов, для решения задач оптимизации.

В основе AIS лежит аналогия с функционированием биологической иммунной системы. Вместо клеток и антигенов в AIS используются искусственные аналоги – антитела и антигены. Антитела представляют собой структуры данных, которые представляют решения задачи, а антигены – нежелательные элементы или участки пространства поиска.

Процесс работы AIS включает в себя этапы обнаружения, распознавания и уничтожения антигенов. На первом этапе генерируется начальная популяция антител, представляющая возможные решения задачи. Затем происходит процесс обнаружения антигенов, то есть нежелательных элементов в пространстве поиска. После обнаружения антитела, способные распознать и связаться с антигенами, усиливаются, а те, которые не эффективны, отбрасываются. Наконец, выбранные антитела, успешно связавшиеся с антигенами, могут использоваться для генерации новых кандидатов решений, что позволяет улучшить производительность алгоритма.

Алгоритмы оптимизации с искусственным иммунитетом демонстрируют свою эффективность в решении различных задач оптимизации, таких как поиск оптимальных параметров в машинном обучении, проектирование нейронных сетей, а также в задачах адаптивного управления и оптимизации структур данных.

Рассмотрим пример задачи оптимизации распределения ресурсов в сети. Допустим, у нас есть 3 сервера и 5 задач, и нам нужно распределить эти задачи между серверами таким образом, чтобы минимизировать общую нагрузку на сеть и время выполнения задач. Мы можем использовать алгоритм оптимизации с искусственным иммунитетом для решения этой задачи.

import numpy as np

import random

# Функция для оценки приспособленности распределения задач

def network_load(tasks_distribution):

return np.sum(tasks_distribution)

# Применение операторов мутации и скрещивания для создания новых кандидатов

def mutation(tasks_distribution):

mutated_tasks_distribution = tasks_distribution.copy()

server_index = np.random.randint(len(tasks_distribution))

task_index = np.random.randint(len(tasks_distribution[0]))

mutated_tasks_distribution[server_index][task_index] = np.random.randint(0, 100)

return mutated_tasks_distribution

def crossover(parent1, parent2):

child = parent1.copy()

for i in range(len(parent1)):

for j in range(len(parent1[0])):

if np.random.rand() > 0.5:

child[i][j] = parent2[i][j]

return child

def replace_worst_part(population, new_candidates):

fitness_values = [network_load(tasks_distribution) for tasks_distribution in population]

sorted_indices = np.argsort(fitness_values)

worst_part_indices = sorted_indices[-len(new_candidates):]

for i, index in enumerate(worst_part_indices):

population[index] = new_candidates[i]

return population

# Определение параметров задачи и алгоритма

num_servers = 3

num_tasks = 5

population_size = 10

num_generations = 100

# Инициализация начальной популяции

population = [np.random.randint(0, 100, (num_servers, num_tasks)) for _ in range(population_size)]

# Основной цикл генетического алгоритма

for generation in range(num_generations):

# Оценка приспособленности текущей популяции

fitness_values = [network_load(tasks_distribution) for tasks_distribution in population]

Все книги на сайте предоставены для ознакомления и защищены авторским правом