ИВВ "Алгоритм имитации отжига (АИО). Формула AGI"

«Алгоритм имитации отжига (АИО) для формулы AGI» представляет собой исследование и практическое руководство, посвященное применению алгоритма имитации отжига в конкретном контексте искусственного общего интеллекта (AGI). Книга представляет исследование и руководство по применению алгоритма имитации отжига для оптимизации параметров формулы AGI. Она охватывает основные принципы и практические примеры использования алгоритма, а также обобщение результатов.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785006256149

child_care Возрастное ограничение : 12

update Дата обновления : 23.03.2024

Алгоритм имитации отжига (АИО) был разработан вдохновленным термодинамическим процессом отжига в металлургии. Основной идеей этого алгоритма является постепенное изменение решений с учетом их качества и температуры в процессе поиска оптимального решения.

Основные принципы и идеи АИО включают:

1. Рандомизация: алгоритм использует случайные изменения в текущем решении для получения новых вариантов. Это позволяет избегать застревания в локальных оптимумах и повышает вероятность нахождения глобального оптимума.

2. Постепенное уточнение: АИО начинает с высокой температуры, на которой решения принимаются с большей вероятностью, включая и худшие. С течением времени и снижением температуры, вероятность принятия худших решений снижается, и алгоритм сконцентрирован на уточнении решений.

3. Функция стоимости: для оценки качества решений используется функция стоимости, которая определяет, насколько хорошо текущее решение решает задачу оптимизации. Чем меньше значение функции стоимости, тем лучше решение.

4. Охлаждение: процесс постепенно снижает температуру, что приводит к уменьшению вероятности принятия худших решений. Охлаждение может быть реализовано различными способами, например, линейным или экспоненциальным убыванием температуры.

5. Вероятность принятия худшего решения: при понижении температуры, алгоритм может все еще принимать худшие решения, но с меньшей вероятностью. Это позволяет избегать застревания в локальных оптимумах и обеспечивает исследование пространства решений.

6. Процесс останова: алгоритм имитации отжига продолжает работу до достижения определенного критерия останова, например, определенного числа итераций или достижения требуемой точности решения.

В результате применения этих принципов и идей, алгоритм имитации отжига предоставляет эффективный способ поиска оптимальных решений в задачах оптимизации, особенно в тех, где есть множество локальных оптимумов и нет аналитического пути к глобальному оптимуму.

Введение в понятия температуры, охлаждения и приемлемости решения

Введение в понятия температуры, охлаждения и приемлемости решения является важной частью понимания и применения алгоритма имитации отжига (АИО).

Вот их объяснение:

1. Температура:

В контексте алгоритма имитации отжига, температура представляет собой меру «разброса» принимаемых решений при генерировании новых вариантов. Высокая температура означает большой разброс решений, включая и худшие возможности, в то время как низкая температура соответствует меньшему разбросу и сосредоточению на получении более оптимальных решений.

2. Охлаждение:

Охлаждение в АИО описывает процесс понижения температуры с течением времени. Характеристики и скорость охлаждения определяются алгоритмом и зависят от постановки задачи. В общем случае, по мере охлаждения температуры, решения становятся более концентрированными и приближаются к оптимальному решению.

3. Приемлемость решения:

В алгоритме имитации отжига, приемлемость решения определяется вероятностью принятия нового решения, основываясь на разности между функциями стоимости текущего и нового решений, а также текущей температуре. Более высокая разность в стоимости решений может быть принята на начальных стадиях алгоритма при более высокой температуре, но с уменьшением температуры вероятность принятия худшего решения уменьшается.

Температура, охлаждение и приемлемость решения взаимосвязаны, и они являются важными параметрами, настраиваемыми в алгоритме имитации отжига. Они влияют на траекторию поиска решений и влияют на баланс между исследованием пространства решений и фокусом на получение более оптимальных решений.

Расчет вероятности принятия худшего решения

Расчет вероятности принятия худшего решения в алгоритме имитации отжига (АИО) основывается на разности в стоимости текущего и нового решений, а также на текущей температуре. Обычно для расчета вероятности применяются функции, такие как функция Больцмана или функция Метрополиса.

Вот их объяснение:

1. Функция Больцмана:

Функция Больцмана используется для вычисления вероятности принятия худшего решения, и она определяется следующим образом:

P = exp ((C_new – C_curr) /T)

где P – вероятность принятия худшего решения, C_new – стоимость нового решения, C_curr – стоимость текущего решения, T – текущая температура.

Функция Больцмана основана на распределении Больцмана из статистической физики, и она представляет экспоненциальную зависимость между вероятностью и разностью в стоимости решений. С уменьшением температуры разность стоимостей будет оказывать все меньшее влияние на вероятность принятия худшего решения.

2. Функция Метрополиса:

Функция Метрополиса является альтернативной формой для расчета вероятности принятия худшего решения и определяется следующим образом:

P = exp (-delta/T)

где P – вероятность принятия худшего решения, delta – разность в стоимости решений (C_new – C_curr), T – текущая температура.

Функция Метрополиса также основана на экспоненциальной зависимости между вероятностью и разностью в стоимости решений. Чем меньше разность стоимостей, тем выше вероятность принятия худшего решения. С уменьшением температуры увеличивается требование к разности стоимостей для принятия худшего решения.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/chitat-onlayn/?art=70454473&lfrom=174836202&ffile=1) на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Все книги на сайте предоставены для ознакомления и защищены авторским правом