ISBN :
Возрастное ограничение : 12
Дата обновления : 12.04.2024
Пример 4. Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются?
Решение:
Найдем количество всех перестановок из этих цифр: P
=6!=720
Пример 5. «Проказница Мартышка, Осел, Козел, Да косолапый Мишка
Затеяли играть квартет …Стой, братцы стой! – Кричит Мартышка, – погодите! Как музыке идти? Ведь вы не так сидите…
И так, и э так пересаживались – опять музыка на лад не идет.
Тут пуще прежнего пошли у них раздоры И споры, Кому и как сидеть…»
Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько?
Решение
Здесь речь идет о перестановке из четырех элементов,
Значит, возможно, P
=4!=24 варианта перестановок.
1.5. Сочетания без повторений.
Сочетанием без повторений называется такое размещение, при котором порядок следования элементов не имеет значения.
Всякое множество X состоящее из m элементов, называется сочетанием из n элементов по m.
Таким образом, количество вариантов при сочетании будет меньше числа вариантов размещений.
Число сочетаний из n элементов по m обозначается.
(2.3).
Пример 6. У одного человека 7 книг по математике, а у второго – 9. Сколькими способами они могут обменять друг у друга две книги на две книги.
Решение:
Так как порядок следования книг не имеет значения, то выбор 2
книг – сочетание. Первый человек может выбрать 2 книги
способами. Второй человек может выбрать 2 книги
. Значит всего по правилу произведения возможно 21*36=756 вариантов.
1.6. Решение типовых задач.
Задача 1. Ученик должен выполнить практическую работу по математике. Ему предложили на выбор 17 тем по алгебре и 13 тем по геометрии. Сколькими способами он может выбрать одну тему для практической работы?
Решение: X=17, Y=13
По правилу суммы X U Y=17+13=30 тем.
Задача 2. Имеется 5 билетов денежно-вещевой лотереи, 6 билетов спортлото и 10 билетов автомотолотереи. Сколькими способами можно выбрать один билет из спортлото или автомотолотереи?
Решение: Так как денежно-вещевая лотерея в выборе не участвует, то всего 6+10=16 вариантов.
Задача 3. Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать?
Решение: Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12*3=36 вариантов переплета.
Задача 4. Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?
Решение: В таких числах последняя цифра будет такая же, как и первая, а предпоследняя – как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX, где Y и Z -любые цифры, а X – не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.
Задача 5. Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец?
Решение: два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами, считаются разными, поэтому:
Возможно 360 вариантов.
Задача 6. Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр.
Решение:
Так как кнопки нажимаются одновременно, то выбор этих трех кнопок – сочетание. Отсюда возможно вариантов.
Задача 7. У одного человека 7 книг по математике, а у второго – 9. Сколькими способами они могут обменять друг у друга две книги на две книги.
Решение:
Так как порядок следования книг не имеет значения, то выбор 2
книг – сочетание. Первый человек может выбрать 2 книги способами. Второй человек может выбрать 2 книги. Значит всего по правилу произведения возможно 21*36=756 вариантов.
Задача 8. При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать?
Решение:
Первый игрок делает выбор из 28 костей. Второй из 28—7=21 костей, третий 14, а четвертый игрок забирает оставшиеся кости.
Следовательно, возможно.
Все книги на сайте предоставены для ознакомления и защищены авторским правом