Оксана М "Python и нейросети:Революционный подход к изучению программирования"

"Книга "Python и нейросети: Революционный подход к изучению программирования" предлагает комплексный взгляд на программирование и искусственный интеллект. От основ Python до продвинутых нейросетей, читатели научатся манипулировать данными с помощью TensorFlow и PyTorch, исследуют алгоритмы машинного обучения и разработают собственные проекты, такие как чат-боты и системы распознавания изображений. В книге также представлены персонализированные методы обучения через нейросети, а приложение включает глоссарий терминов и полезные ресурсы для продолжения образования. Эта книга станет незаменимым ресурсом для всех, кто хочет глубоко погрузиться в мир современных технологий и программирования."

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 0

update Дата обновления : 24.04.2024

Что такое искусственный интеллект и нейросети

Искусственный интеллект (ИИ) – это раздел информатики, который занимается созданием машин, способных выполнять задачи, требующие человеческого интеллекта, такие как восприятие, рассуждение, обучение и решение проблем. В основе ИИ лежат алгоритмы, способные обрабатывать, анализировать и извлекать знания или умения из данных. Нейросети – это класс алгоритмов ИИ, вдохновленных строением и функционированием человеческого мозга, состоящих из слоев нейронов, соединенных синапсами.

Типы нейросетей: свёрточные, рекуррентные, MLP

– Свёрточные нейросети (CNN): Эти сети имитируют процесс зрительного восприятия у животных и используются в основном для задач обработки изображений и видео. CNN хорошо справляются с распознаванием образов, классификацией изображений и даже с анализом видео в реальном времени.

– Рекуррентные нейросети (RNN): RNN обладают способностью сохранять информацию о предыдущих данных благодаря внутреннему состоянию (памяти), что делает их идеальными для задач, где необходимо работать с последовательностями данных, например, при обработке естественного языка или при анализе временных рядов.

– Многослойные перцептроны(MLP): Основанные на классических принципах нейронных сетей, MLP состоят из входного слоя, одного или нескольких скрытых слоев и выходного слоя. Эти сети используются в различных задачах, от классификации и регрессии до рекомендательных систем.

Основные библиотеки Python для работы с нейросетями: TensorFlow, PyTorch

– TensorFlow: Разработанная Google библиотека, предоставляет мощные инструменты для создания и тренировки различных типов нейросетей. TensorFlow поддерживает как настольные, так и мобильные платформы, предлагая удобные инструменты для разработки и деплоя моделей.

– PyTorch: Библиотека от Facebook, которая стала особенно популярна в академических кругах благодаря своей гибкости и удобству использования при построении сложных архитектур нейросетей. PyTorch поддерживает динамическое создание графов, что дает исследователям больше свободы в экспериментировании.

Практические примеры использования нейросетей в Python

В качестве практического примера рассмотрим задачу классификации изображений с использованием свёрточной нейросети в TensorFlow. Мы используем набор данных CIFAR-10, который содержит тысячи цветных изображений, разделенных на 10 классов.

import tensorflow as tf

from tensorflow.keras import layers, models

# Загрузка и предобработка данных

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data()

train_images, test_images = train_images / 255.0, test_images / 255.0

# Построение модели CNN

model = models.Sequential([

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/chitat-onlayn/?art=70574200&lfrom=174836202&ffile=1) на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Все книги на сайте предоставены для ознакомления и защищены авторским правом