9785006275225
ISBN :Возрастное ограничение : 12
Дата обновления : 25.04.2024
Рис. 4. Обученная однонейронная многоуровневая сеть PANN
Приведенная схема обучения нейрона Progress порождает ряд замечательных свойств сети PANN:
1. Обучение не требует вычислительных операций и поэтому происходит очень быстро.
2. Набор синаптических весов одного нейрона никак не зависит от других нейронов, и поэтому нейроны сети можно обучать как по отдельности, так и группами, а потом обученные нейроны или их группы объединять в сеть.
3. Сеть может доучиваться, то есть можно изменять, добавлять и убирать нужные нейроны в любое время, не влияя при этом на незатронутые данными изменениями нейроны.
4. Обученный нейрон-имидж может быть легко визуализирован с использованием простейших цветовых кодов, связывающих уровни включенных весов с яркостью или цветом пикселей.
2.3. ЗАБАВНЫЙ ПАРАДОКС PANN
На первый взгляд сеть PANN выглядит конструктивно сложнее, чем классические Искусственные Нейронные Сети. Но в действительности PANN проще.
Сеть PANN проще, потому что:
1. В нейроне Розенблатта есть фактор активации, то есть обработка полученного результата посредством нелинейной логистической (сигмовидной) функции, S-кривой и т. п. Без этого нельзя обойтись, но это усложняет нейрон Розенблатта и делает его нелинейным, что приводит к огромным проблемам при обучении. В отличие от него нейрон Progress строго линеен и никаких проблем не порождает.
2. В нейроне Progress имеется дополнительный элемент – дистрибьютор, представляющий собой несложное логическое устройство: демультиплексор. Оно переключает сигнал с одного входа на один из нескольких выходов. В нейроне Розенблатта веса – многобитовые ячейки памяти, допускающие хранение чисел в широком диапазоне, а в PANN могут использоваться простейшие ячейки (триггеры), способные хранить только числа – 1 и 0.
3. PANN, в отличие от классических сетей, не требует очень большой памяти и вычислительной мощности компьютера, поэтому можно использовать дешевые компьютеры и требуется намного меньшее количество электроэнергии.
4. PANN позволяет решать сложные задачи на однослойной сети.
5. PANN требует в десятки и даже сотни раз меньшего количества имиджей в обучающей выборке.
Таким образом открываются возможности создавать на основе PANN полноценные продукты, используя не очень дорогую и экономичную в плане потребления энергии компьютерную технику.
Рис. 5. Долгое и дорогое обучение против быстрого и дешевого
2.4. МАТЕМАТИЧЕСКАЯ ОСНОВА РАСПОЗНАВАНИЯ
НА НЕЙРОНЕ PROGRESS
Линейность нейрона Progress приводит к тому, что и сеть, построенная на этих нейронах, линейна. А это обеспечивает ее полную прозрачность, простоту описывающей ее теории и применяемой математики.
В 1965 г. Лотфи Заде ввел понятие «нечетких множеств» и идею «нечеткой логики». В какой-то степени это послужило подсказкой для нашей работы по разработке математического обоснования и логики PANN. Математические операции в PANN направлены на сравнение неточно совпадающих имиджей и оценку степени их расхождения в виде коэффициентов сходства.
2.4.1. Определения
В 2009 г. было сделано интересное открытие, названное «нейрон Мерлин Монро» или в других источниках «нейрон бабушки». Оказывается, в голове человека знания по определенным темам «разнесены» по отдельным нейронам и нейронным группам, которые связаны друг с другом ассоциативными связями, так что возбуждение может передаваться с одних нейронов на другие. Это знание вместе с принятой парадигмой «Один нейрон – один имидж» позволило построить систему распознавания PANN.
Введем понятие «нейрон-имидж» – это нейрон, обученный конкретному имиджу. В PANN каждый нейрон-имидж – это реализованная функциональная зависимость (функция) Y = f (X), где:
X – некоторый числовой массив (вектор), обладающий свойствами:
при X = A, f (A) = N
при X ? A, f (A) A – некоторая заданная величина. N – размерность вектора X, то есть число цифр в этом векторе. Для записи числовых векторов X предложен специальный формат, запатентованный компанией Progress Inc. Этот формат, названый Binary Comparison Format (BCF), представляет собой прямоугольную бинарную цифровую матрицу, в которой: • количество колонок равно длине N (числу цифр) массива; • количество строк равно числу выбранных для сети уровней веса k; • каждая значащая цифра обозначается единицей (1) в соответствующей строке, а отсутствие цифры – нулем (0); • каждая строка соответствует некоторой значащей цифре записываемого числового массива, то есть в строке, обозначенной как «нулевая», цифра «1» соответствует цифре «0» в исходном массиве, а в строке, обозначенной как «девятая», – цифра «1» соответствует цифре 9 в массиве; • в каждой колонке матрицы имеется одна единица, соответствующая величине данной цифры, а все остальные величины в этой колонке равны 0; • сумма всех единиц в матрице массива равна длине N данного массива, например для массива из 20 цифр она равна 20; • суммарное количество нулей и единиц в матрице каждого массива равно произведению длины N данного массива на величину основания используемой системы счисления. Пример: BCF-запись массива из 20 десятичных цифр [1, 9, 3, 6, 4, 5, 4, 9, 8, 7, 7, 1, 0, 7, 8, 0, 9, 8, 0,2]. Рис. 6. BCF-имидж как разреженная бинарная матрица Особенностью сетей PANN является то, что обучение нейронов по имиджам, типичное для нейронных сетей, может быть заменено переформатированием файлов, несущих числовые зависимости, к формату BCF, или просто загрузкой в сеть файлов в этом формате. Массивы типа X в формате BCF обозначаются как матрицы |X|. 2.4.2. Сравнение числовых массивов Сравнение объектов, или определение сходства и различия. Определение сходства тех или иных объектов путем их сравнения играет огромную роль в мышлении, позволяет выявлять аналогии и отличия разных объектов – существ, предметов, процессов, идей и т. п. В разных отраслях науки, в первую очередь в Теории Подобия, используются безразмерные коэффициенты сходства или критерии подобия (Coefficient Similarity, или CoS), иногда называемые «мера сходства», «мера ассоциации», «мера подобия» и т. п. Функции сравнения в PANN реализуются через математические операции над матрицами числовых массивов. Рассмотрим простейший алгоритм сравнения через векторное произведение матриц нейронов-имиджей. Даны два массива для сравнения в виде матриц |X | и |X |. |X | ? |X | – векторное произведение матрицы |X | на транспонированную матрицу |X |. Причем величина этого произведения пропорциональна числу совпадающих по месту в BCF-матрице единиц в |X | и |X |. |X | ? |X | = N, только если |X | = |X |; |X | ? |X | | ? |X |; |X | ? |X |
Все книги на сайте предоставены для ознакомления и защищены авторским правом