Сборник "Искусственный интеллект – надежды и опасения"

В далеком 1950 году американский математик, отец-основатель кибернетики и теории искусственного интеллекта Норберт Винер опубликовал работу «Человеческое применение человеческих существ» (в русском переводе – «Кибернетика и общество»), в которой выразил свои опасения, связанные с развитием искусственного интеллекта. Сейчас, в ХХI веке, проблема выглядит еще более злободневной. Наша компьютерная зависимость стала тотальной. Развлечения, покупки, работа, учеба – практически все сосредоточено в гаджетах размером с ладонь. Руководствуясь удобством и – что уж греха таить? – ленью, мы перекладываем на ИИ часть надоевших и скучных функций, а зачастую доверяем ему и принятие решений. Пока, на волне эйфории от открывшихся перспектив, преимущества искусственного интеллекта кажутся неоспоримыми, но не получится ли так, что милые удобства, которые мы получили сейчас, в период «младенчества» искусственного интеллекта, обернутся крупными неприятностями, когда «младенец» повзрослеет и посмотрит на «родителей» критическим взглядом? Руководствуясь формулой «кто предупрежден – тот вооружен», Джон Брокман предложил известным ученым, публицистам и философам поразмышлять о перспективах взаимодействия человека и искусственного интеллекта в свете идей, высказанных Винером, а также в свете новых реалий и последних достижений научной мысли.

date_range Год издания :

foundation Издательство :Издательство АСТ

person Автор :

workspaces ISBN :978-5-17-115937-5

child_care Возрастное ограничение : 16

update Дата обновления : 14.06.2023


Ошибочно, зато актуальнее, чем когда-либо

Я познакомился с Сетом Ллойдом в конце 1980-х годов, когда повсюду возникали новые способы мышления: значимость принципов биологической организации, вычислительный взгляд на математику и физические процессы, пристальное внимание к параллельным сетям, важность нелинейной динамики, новое понимание хаоса, идеи коннекционистов, нейронные сети, параллельная распределенная обработка… Развитие в области вычислений в указанный период предоставило нам новый способ мышления о знаниях.

Сет любит называть себя квантовым механиком. Он известен во всем мире своими исследованиями в области квантовых вычислений, где предпринимаются попытки использовать экзотические свойства квантовой теории, такие как суперпозиция и запутанность, для решения задач, которые придется решать несколько столетий на классических компьютерах.

В своем очерке он прослеживает историю теории информации от пророческих видений Норберта Винера до предсказаний технологической «сингулярности», которая, как хотелось бы кое-кому нас убедить, будто бы вытеснит человеческий род. Его взгляд на относительно новый метод программирования, так называемое глубинное обучение, состоит в том, чтобы призывать к более трезвой оценке перспектив; он отмечает, что, несмотря на огромные успехи ИИ, роботы «до сих пор не в состоянии завязать себе шнурки».

Мне трудно говорить о Сете, не ссылаясь на его отношения с другом и наставником, покойным физиком-теоретиком Хайнцем Пагельсом из Университета Рокфеллера. Вместе студент (Сет) и профессор (Пагельс) в немалой степени способствовали интеллектуальному развитию друг друга.

Летом 1988 года я навестил Хайнца и Сета в физическом центре в Аспене. Их совместная работа по сложности должна была выйти в свежем выпуске журнала «Сайентифик америкен»; оба безудержно радовались. Мы встретились всего за две недели до трагической гибели Хайнца при спуске с пика Пирамида; в горы они, разумеется, отправились вместе с Сетом и по дороге говорили о квантовых вычислениях.

В работе «Человеческое применение человеческих существ» (1950), где Норберт Винер в популярной форме излагал основные идеи своей чрезвычайно влиятельной книги «Кибернетика, или Управление и связь в животном и в машине» (1948), исследуется взаимодействие человеческих существ и машин в мире, в котором машины становятся все более мощными и способными к вычислениям. Это удивительно пророческая книга – и удивительно ошибочная в своих выводах. Написанная в разгар холодной войны, она, помимо прочего, содержит холодящее кровь напоминание об опасностях тоталитарных организаций и обществ, а также об угрозах демократии, которая пытается бороться с тоталитаризмом тоталитарным оружием.

В «Кибернетике» Винера тщательно изучаются и научно описываются подробности управления посредством обратной связи. (Само слово «кибернетика», производное от древнегреческого слова «кормщик», послужило этимологической основой позднего слова «губернатор»[20 - Английское слово governor («губернатор») восходит через латынь к древнегреческому kybernan («управлять, направлять»), как и предложенное Н. Винером слово «кибернетика».]; Джеймс Уатт именно так назвал свое новаторское устройство управления с обратной связью, которое преобразило область применения паровых двигателей.) Поскольку он плотно занимался задачами управления, Винер рассматривал мир как совокупность комплексных и взаимосвязанных контуров обратной связи, где датчики, сигналы и исполнительные механизмы, наподобие двигателей, взаимодействуют через сложно организованный обмен сигналами и информацией. Для инженерии «Кибернетика» оказалась необычайно полезной и эффективной, эти идеи позволили конструировать ракеты, роботов, автоматизированные сборочные линии и разработать множество прецизионных инженерных методов – иными словами, она, можно сказать, заложила фундамент современного индустриального общества.

Впрочем, Винер лелеял более честолюбивые замыслы в отношении кибернетических концепций; в «Человеческом применении человеческих существ» он рассуждает об их применимости к столь разнообразным предметам, как демон Максвелла, человеческий язык, мозг, метаболизм насекомых, правовая система, роль технологических инноваций в государственном управлении и религии. Эти более широкие применения кибернетики обернулись почти безоговорочным провалом. Шумиха вокруг кибернетики длилась с конца 1940-х до начала 1960-х годов (во многом напоминая шумиху в области компьютерных и коммуникационных технологий, завершившуюся крахом доткомов в 2000–2001 годах); можно сказать, что кибернетика породила спутники и системы телефонной коммутации, но практически не повлияла на социальную организацию и общество в целом.

Зато почти семьдесят лет спустя работа «Человеческое применение человеческих существ» может научить современных людей много большему, чем могла научить первых читателей. Быть может, замечательнее всего в этой книге то, что она предлагает к обсуждению большое количество тем по взаимодействию человека и машины, во многом сохраняющих актуальность по сей день. Мрачная по своей тональности, книга прогнозирует ряд катастроф второй половины XX столетия, и многие ее предсказания едва ли не идентичны нынешним пророчествам относительно второй половины XXI столетия.

Например, Винер предвидел в 1950 году такой момент в ближайшем будущем, когда люди передадут управление обществом кибернетическому искусственному интеллекту, который впоследствии причинит человечеству немалый урон. Винер предсказывал, что автоматизация производства чревата как значительным повышением производительности труда, так и ростом безработицы; данную последовательность событий мы действительно наблюдаем в последующие десятилетия. Винер предупреждал, что революция неизбежна, если только общество не сумеет подыскать новые продуктивные занятия этим безработным.

Но Винер оказался не в состоянии предугадать важные технологические разработки. Подобно почти всем «технологистам» 1950-х годов, он не предвидел компьютерной революции. По его мнению, компьютеры в конечном счете должны были подешеветь с сотен тысяч долларов (в ценах 1950-х годов) до десятков тысяч долларов; ни он сам, ни его соратники и соперники не ожидали того колоссального прорыва, который случился в компьютерных технологиях благодаря применению транзисторов и интегральных схем. Кроме того, будучи одержим задачами управления, Винер не смог вообразить технологический мир, где инновации и самоорганизация передаются по цепочке снизу вверх, а не навязываются сверху.

Сосредоточившись на пороках тоталитаризма (политического, научного и религиозного), Винер воспринимал происходящее глубоко пессимистически. Его книга предрекала катастрофу, которая непременно произойдет, если мы не исправимся, причем как можно быстрее. Современный мир людей и машин более полувека спустя после публикации книги Винера гораздо сложнее и богаче и содержит намного больше политических, социальных и научных систем, чем он мог себе представить. Впрочем, предупреждения относительно того, что может случиться, если мы ошибемся, – например, если некий глобальный тоталитарный режим установит полный контроль над интернетом, – ничуть не утратили актуальности по сравнению с 1950 годом.

В чем Винер был прав

Наиболее известные математические работы Винера были посвящены проблемам анализа сигналов и воздействия шума. В годы Второй мировой войны он разработал методику управления стрельбой зенитной артиллерии на основании моделей, позволяющих предугадывать траекторию движения летательных аппаратов через экстраполяцию характеристик полета. В «Кибернетике» и «Человеческом применении человеческих существ» Винер отмечает, что такой предыдущий опыт подразумевал в том числе прихоти и привычки людей-пилотов, поэтому механизированное устройство способно предсказывать поведение людей. Подобно Алану Тьюрингу, чей знаменитый тест допускал, что вычислительные машины могут давать ответы на вопросы, неотличимые от человеческих ответов, Винер всем сердцем верил в возможность описания человеческого поведения математическими уравнениями. В 1940-х годах он стал сопоставлять теоретические знания о контурах управления и обратной связи с нервно-мышечной обратной связью в живых системах – и лично пригласил в Массачусетский технологический институт Уоррена Маккаллока и Уолтера Питтса[21 - Американский нейролингвист и математик, вместе с У. Маккаллоком исследовал возможности «компьютеризации» нейронов.], которые приступили к новаторским исследованиям в области искусственных нейронных сетей.

Главная идея Винера заключалась в том, что мир следует понимать с точки зрения информации. Сложные системы, будь то живые организмы, мозг или человеческое общество, состоят из взаимосвязанных контуров обратной связи, где обмен сигналами между подсистемами порождает комплексное, но стабильное поведение. Когда целостность контура обратной связи нарушается, система утрачивает стабильность. Винер нарисовал убедительную картину функционирования сложной биологической системы – картину, в целом общепринятую сегодня.

Восприятие информации как центрального звена управления поведением сложных систем было замечательным открытием своего времени. Ныне, когда автомобили и холодильники битком набиты микропроцессорами, а бо?льшая часть человеческого общества в своей деятельности опирается на компьютеры и сотовые телефоны, подключенные к интернету, подчеркивать важнейшую роль информации, вычислений и связи кажется банальностью. Но в эпоху Винера первые цифровые компьютеры только-только появлялись, а об интернете никто даже не задумывался.

Замечательное прозрение Винера – что не только сложные инженерные системы, но какие угодно сложные системы опираются в работе на циклы сигналов и вычислений – обеспечило несомненный прорыв в области разработки комплексных систем, создаваемых человеком. Например, те методы, которые Винер и его соратники разрабатывали для управления ракетами, впоследствии получили применение при конструировании лунного корабля «Сатурн-V»[22 -

Американская сверхтяжелая ракета-носитель, использовалась для вывода в космос кораблей проекта «Аполлон» и космической станции «Скайлэб».], одного из главных технических достижений XX столетия. А кибернетические выкладки Винера относительно человеческого мозга и компьютеризированного восприятия можно по праву посчитать «прародителями» современных систем глубинного обучения на основе нейронных сетей, а также искусственного интеллекта как такового. Однако текущее развитие ситуации в этих областях не совпадает с нарисованной им картиной, и не исключено, что в дальнейшем это скажется на человеческом использовании как человеческих существ, так и машин.

В чем Винер ошибался

Именно применительно к людям кибернетические идеи Винера оказались ошибочными. Оставляя в стороне его достаточно дилетантские размышления о языке[23 - Вероятно, имеется в виду стремление Н. Винера обнаружить «язык» у животных и насекомых и приписывание человеку «врожденной» способности к шифрованию/дешифрованию сигналов.], законодательстве и человеческом обществе, рассмотрим более скромную, но потенциально полезную инновацию, внедрение которой он считал неизбежным в 1950 году. Винер отмечал, что протезы станут намного эффективнее, если их владельцы обретут способность напрямую общаться с этими устройствами посредством нервных сигналов, получать информацию о давлении и местоположении от протезированных конечностей и направлять их последующие движения. Как выяснилось, на самом деле все куда сложнее, чем предполагал Винер: семьдесят лет спустя протезы с «нервической» обратной связью не продвинулись дальше грубых, по сути, прототипов. Сама концепция Винера превосходна, но дело в том, что крайне непросто сопрячь нейронные сигналы с механико-электрическими устройствами.

Что еще важнее, Винер (как и практически всё поколение 1950-х) сильно недооценивал потенциал цифровых вычислений. Как уже отмечалось, в области математики Винер занимался анализом сигналов и шума, его аналитические методы применимы к постоянно меняющимся – аналоговым – сигналам. Да, он участвовал в разработке методов цифровых вычислений в годы войны, но не предвидел (и вряд ли мог предвидеть) экспоненциальный рост вычислительных мощностей в результате внедрения и устойчивой миниатюризации полупроводниковых схем. Не будем винить Винера: транзистор тогда еще не изобрели, электронные лампы в знакомых ему цифровых компьютерах не отличались надежностью, а сама технология их использования не масштабировалась для более крупных устройств. В дополнении к изданию «Кибернетики» 1948 года он предполагал появление шахматных компьютеров и предсказывал, что они смогут мыслить на два-три (всего) хода вперед. Наверняка он несказанно удивился бы, доведись ему узнать, что за полстолетия компьютер сумеет одолеть чемпиона мира по шахматам среди людей.

Технологическая переоценка и экзистенциальные риски сингулярности

Когда Винер писал свои книги, рождался показательный пример переоценки технологических возможностей. В 1950-х годах предпринимались первые попытки разработать искусственный интеллект; речь о таких исследователях, как Герберт Саймон, Джон Маккарти и Марвин Минский, которые начали программировать компьютеры на выполнение простых задач и конструировать примитивных роботов. Успех первоначальных усилий побудил Саймона заявить, что «машины в ближайшие двадцать лет смогут выполнять любую работу, которую способен выполнить человек». Подобные прогнозы с треском провалились. Последовательно наращивая свою мощность, компьютеры все лучше и лучше играли в шахматы, поскольку могли систематически генерировать и оценивать широкий выбор потенциальных будущих ходов. Но большинство предсказаний в сфере ИИ, будь то горничные-роботы или что-то еще, оказались пустыми фантазиями. Когда суперкомпьютер DeepBlue победил Гарри Каспарова в шахматном матче 1997 года, наиболее «продвинутым» роботом-уборщиком считалась «Румба», которая беспорядочно металась по помещению с пылесосом и пищала, застревая под диваном.

Технологические прогнозы весьма проблематичны, учитывая, что технологии развиваются через усовершенствования, сталкиваются с препятствиями и форсируются инновациями. Многие препятствия и отдельные инновации выглядят ожидаемыми, но к большинству тех и других это не относится. В моей собственной области экспериментов по созданию квантовых компьютеров я обычно наблюдаю, как отдельные технологические этапы, казалось бы вполне реализуемые, оказываются невозможными, тогда как другие задачи, нерешаемые, как мне думается, легко осуществляются на практике. В общем, не узнаешь, пока не попробуешь.

В 1950-х годах Джон фон Нейман, отчасти вдохновляясь беседами с Винером, ввел понятие «технологической сингулярности». Технологии имеют тенденцию улучшаться в геометрической прогрессии, скажем удваивать мощность или чувствительность приборов за некоторый интервал времени. (Например, с 1950 года компьютеры удваивали мощность примерно каждые два года – это наблюдение известно как закон Мура.) Фон Нейман экстраполировал наблюдаемый экспоненциальный технический прогресс и допустил, что «технический прогресс станет непостижимо быстрым и сложным», опережая человеческие возможности в уже не слишком отдаленном будущем. Действительно, если отталкиваться исключительно от наращивания вычислительных мощностей, выраженных в битах и битовых переходах, и прогнозировать будущее на основании текущих темпов, мы вправе утверждать, что компьютеры сравняются по возможностям с человеческим мозгом в ближайшие два-три-четыре десятилетия (в зависимости от того, как оценивать сложность процессов обработки информации в человеческом мозге).

Провал первоначальных, чрезмерно оптимистичных прогнозов относительно создания полноценного ИИ на несколько десятилетий заглушил разговоры о технологической сингулярности, но после публикации работы Рэя Курцвейла «Сингулярность рядом» (2005) идея технического развития, ведущего к появлению суперинтеллекта, снова обрела силу. Кое-кто, включая самого Курцвейла, стал рассматривать эту сингулярность как возможность прорыва: мол, люди смогут объединить свои сознания со сверхразумом и тем самым обрести вечную жизнь. Стивен Хокинг и Илон Маск высказали опасения, что этот суперинтеллект окажется злонамеренным, и расценивали его как величайшую из нынешних угроз существованию человеческой цивилизации. Третьи, в том числе некоторые из авторов настоящей книги, полагают, что подобные опасения преувеличенны.

Труды Винера и то обстоятельство, что он не сумел предугадать последствия развития кибернетики, неразрывно связаны с представлением о приближении технологической сингулярности. Его деятельность в сфере нейробиологии и первоначальная поддержка, которую он оказывал Маккаллоку и Питтсу, позволили разработать современные, поразительно эффективные методы глубинного обучения. За последнее десятилетие, особенно в последние пять лет, такие методы глубинного обучения наконец-то привели к возникновению, если воспользоваться одним из терминов Винера, гештальта: машина, например, способна распознавать в круге круг, даже если он наклонен и выглядит как эллипс. Винеровские концепции управления вкупе с изучением нейромышечной обратной связи имели большое значение для развития робототехники и послужили основой для разработки нейронных интерфейсов «человек/машина». Однако однобокость его технологических прогнозов побуждает воспринимать идею технологической сингулярности с немалой осторожностью. Общие затруднения технологического прогнозирования как такового и проблемы, свойственные разработке суперинтеллекта, удерживают меня от избыточного энтузиазма в отношении как вычислительной мощности, так и эффективности обработки информации.

Аргументы в пользу скептиков

Никакое экспоненциальное развитие не длится бесконечно. Атомный взрыв распространяется по экспоненте, но только пока не кончится его «топливо». Точно так же экспоненциальный прогресс по закону Мура начинает сталкиваться с пределами, налагаемыми физикой. Тактовая частота компьютеров достигла максимума в несколько гигагерц полтора десятилетия назад, далее чипы начали плавиться от нагрева. Миниатюризация транзисторов столкнулась с квантово-механическими проблемами вследствие туннелирования[24 - В данном случае речь идет о т. н. туннельном эффекте в квантовой механике, когда частицы преодолевают энергетический барьер, величина которого превышает энергию этих частиц.] и утечек тока. Рано или поздно различные экспоненциальные улучшения памяти и обработки информации по закону Мура достигнут предела. Впрочем, возможно, что нескольких десятилетий окажется достаточно для того, чтобы вычислительные мощности машин сравнялись с мощностью человеческого мозга – по крайней мере, по грубым показателям количества битов и битовых переходов в секунду.

Человеческий мозг чрезвычайно сложен и представляет собой плод миллионов лет естественного отбора. В эпоху Винера понимание архитектуры мозга было элементарным и упрощенным. С тех пор все более чувствительные инструменты и методы визуализации показали, что мозг гораздо разнообразнее по структуре и сложнее по функциям, чем мог вообразить Винер. Недавно я спросил Томазо Поджо[25 - Американский когнитивист и кибернетик, директор центра биологического и компьютерного обучения МТИ.], одного из пионеров современной нейробиологии, способны ли, по его мнению, компьютеры с их быстрорастущей вычислительной мощностью вскоре имитировать функционирование человеческого мозга. «Ни в коем случае», – ответил он.

Последние достижения в области глубинного обучения и нейроморфных вычислений очень точно воспроизводят некоторые особенности человеческого интеллекта, деятельность коры головного мозга, где обрабатываются и распознаются образы. Эти достижения позволили компьютеру победить чемпионов мира по шахматам и по игре в го, что нельзя не признать выдающимся результатом, но мы по-прежнему далеки от того, чтобы компьютеризированный робот мог полноценно убираться в помещении. (Вообще-то, роботы, обладающие хотя бы подобием широкого диапазона гибких человеческих движений, еще далеки от совершенства; рекомендую почитать материалы по запросу «ошибки роботов». Роботы успешно справляются с прецизионной сваркой на сборочных линиях, но до сих пор не в состоянии завязать шнурки.)

Сама по себе мощность обработки информации не означает разнообразия способов такой обработки. Пусть мощность компьютеров росла экспоненциально, программы, с помощью которых работают компьютеры, часто вообще не развивались. Как правило, компании-разработчики программного обеспечения реагируют на рост вычислительной мощности добавлением «полезных» функций, которые нередко затрудняют использование этого программного обеспечения. Так, офисная программа Microsoft Word достигла некоего идеала в 1995 году и с тех пор медленно гибнет под «весом» дополнительной функциональности. Как только развитие по закону Мура начнет замедляться, разработчики программного обеспечения столкнутся с непростым выбором между эффективностью, скоростью и функциональностью.

Главный страх сторонников идеи сингулярности заключается в том, что по мере все большего вовлечения компьютеров в разработку собственного программного обеспечения они быстро начнут развивать себя ради достижения сверхчеловеческих вычислительных возможностей. Но практика машинного обучения показывает на движение в противоположном направлении. Чем мощнее и способнее к обучению становятся машины, тем усерднее они обучаются, как и люди, усваивая множество полезных уроков и зачастую под наблюдением учителей (людей и машин). Обучение для компьютеров оказывается столь же сложным и медленным процессом, каким оно является для подростков. Следовательно, системы, основанные на глубинном обучении, становятся все более, а не менее человекоподобными. Навыки, которые они привносят в обучение, не «лучше человеческих», но комплементарны человеческому обучению: компьютерные системы способны распознавать модели, недоступные людям, – и наоборот. Лучшие шахматисты мира – это не компьютеры и люди по отдельности, а люди, работающие вместе с компьютерами. Киберпространство действительно населено «злонамеренными» программами, но они в основном имеют форму вредоносных программ (malware) – вирусов, известных своей злобной бессмысленностью, а отнюдь не суперинтеллектом.

Винер и будущее

Винер отмечал, что экспоненциальный технический прогресс представляет собой относительно современное явление и несет благо не во всех своих проявлениях. Он рассматривал атомное оружие и создание ракет с ядерными боеголовками как стремление рода человеческого к самоубийству. Он сравнивал неудержимую эксплуатацию ресурсов планеты с безумным чаепитием из «Алисы в Стране чудес»: опустошая локальную среду, мы добиваемся прогресса и просто пересаживаемся дальше, принимаясь опустошать следующую. Оптимизм Винера в отношении разработки компьютеров и нейромеханических систем сдерживался пессимизмом по поводу применения этих инструментов авторитарными государствами, такими как Советский Союз, и стремления демократий, таких как Соединенные Штаты Америки, сделаться более авторитарными в противостоянии угрозе авторитаризма.

Что бы Винер подумал о нынешнем человеческом использовании человеческих существ? Его наверняка поразили бы мощность компьютеров и интернет. Он порадовался бы тому, что исходные нейронные сети, к созданию которых он был причастен, эволюционировали в мощные системы глубинного обучения, демонстрирующие те возможности восприятия, о каких когда-то мечтали (хотя, пожалуй, его вряд ли вдохновил бы тот факт, что одним из наиболее ярких примеров такого компьютеризированного гештальта сегодня является возможность распознавать фотографии котиков во Всемирной паутине). Вместо того чтобы расценивать машинный интеллект как угрозу, он, как я подозреваю, воспринял бы его как явление в своем праве, отличное от человеческого сознания, но развивающееся параллельно человеческому.

Нисколько не удивляясь глобальному потеплению, этому безумному чаепитию наших дней, Винер приветствовал бы экспоненциальное развитие технологий альтернативной энергии и наверняка использовал бы свой богатый кибернетический опыт для разработки сложных контуров обратной связи, необходимых для внедрения означенных технологий в будущую интеллектуальную электрическую сеть. Тем не менее, признавая, что решение проблем изменения климата зависит не только и не столько от технологий, сколько от политики, он, несомненно, испытывал бы пессимизм относительно наших шансов своевременно справиться с этой угрозой существованию цивилизации. Винер ненавидел торгашей – прежде всего торгашей от политики, – но сознавал, что нам от них никогда не избавиться.

Легко забыть, насколько страшным местом был мир эпохи Винера. Соединенные Штаты Америки и Советский Союз вели полномасштабную гонку вооружений, создавая водородные бомбы и ядерные боеголовки для межконтинентальных баллистических ракет, управляемых навигационными системами, которые отчасти разрабатывал сам Винер (чего он стыдился). Мне было четыре года, когда Винер умер. В 1964 году в начальной школе мы учились нырять под парты на случай ядерной атаки. Учитывая человеческое применение человеческих существ в ту эпоху, Винер, приведись ему увидеть нашу нынешнюю жизнь, в первую очередь порадовался бы тому, что мы до сих пор живы.

Глава 2

Ограничения «непрозрачных» обучаемых машин

В 1980-е годы Джуда Перл предложил новый подход к разработке искусственного интеллекта – на основании байесовских сетей. Эта вероятностная модель машинного мышления позволяла машинам функционировать – в сложном и неопределенном мире – в качестве «локомотивов доказательств», постоянно пересматривая свои убеждения в свете новых свидетельств.

Всего через несколько лет байесовские сети Перла целиком вытеснили предыдущие подходы к искусственному интеллекту, основанные на правилах. Появление методики глубинного обучения – когда компьютеры фактически самообучаются и становятся умнее, обрабатывая мириады данных, – поставило Джуду перед новым вызовом, ведь эта методика лишена прозрачности.

Признавая несомненные заслуги в области глубинного обучения таких коллег, как Майкл И. Джордан и Джеффри Хинтон[26 - М. Джордан – статистик и специалист по машинному обучению, профессор Калифорнийского университета в Беркли; Дж. Хинтон – британо-канадский когнитивист, ведущий научный сотрудник проекта Google Brain, где ведутся исследования ИИ на основе методов глубинного обучения.], Перл не готов мириться с указанной непрозрачностью. Он намеревается изучить теоретические ограничения систем глубинного обучения и утверждает, что существуют базовые препятствия, которые не позволят этим системам уподобиться человеческому интеллекту, что бы мы ни делали. Используя вычислительные преимущества байесовских сетей, Джуда осознал, что комбинация простых графических моделей и данных также может применяться для репрезентации и выведения причинно-следственных связей. Значение этого открытия намного превосходит исходный контекст исследований в сфере искусственного интеллекта. Последняя книга Перла[27 - Judea Perl. Causal Inference in Statistics: A Primer (with Madelyn Glymour and Nicholas Jewell). NY, Wiley, 2016. – Примеч. автора.] объясняет широкой публике суть каузального мышления; можно сказать, что это своего рода учебник для начинающих, которые хотят научиться мыслить, будучи людьми.

Принципиально математический подход к причинности (каузальности) представляет собой значительный вклад Перла в сферу идей. Обращение к этому подходу уже принесло пользу практически во всех областях исследований, в первую очередь в сфере цифровой медицины (data-intensive health – букв. информационно емкого здравоохранения) и социальных наук.

Как бывший физик, я всегда интересовался кибернетикой. Пусть она не использовала в полной мере всю мощь машин Тьюринга, кибернетика – чрезвычайно прозрачная область знаний, возможно, потому, что она опирается на классическую теорию управления и теорию информации. Сегодня мы постепенно теряем эту прозрачность в связи с углублением процессов машинного обучения. По сути, налицо подгонка кривой, когда происходит корректировка значений в промежуточных слоях длинной цепочки ввода-вывода.

Мне встречались многие пользователи, сообщавшие, что «все работает хорошо, но мы не знаем, почему так». Стоит применить такой подход к большим наборам данных, и глубинное обучение приобретает собственную динамику, самостоятельно регулируется и оптимизируется – и в большинстве случаев дает правильные результаты. Но когда этого не случается, никто не понимает, где именно допущена ошибка и что именно следует исправлять. Важнее всего то, что невозможно узнать, имеется ошибка в программе или методике – или каким-то образом изменилась среда. Поэтому нам нужна иная прозрачность.

Кое-кто заявляет, что в прозрачности на самом деле нет необходимости. Мы не понимаем нейронную архитектуру человеческого мозга, но она исправно функционирует, а потому мы прощаем себе наше скудное понимание и охотно пользуемся таким удобным подспорьем. Точно так же, утверждают некоторые, нужно просто применять системы глубинного обучения и создавать машинный интеллект, даже если мы не понимаем, как все это работает. Что ж, до определенной степени я могу согласиться с этим доводом. Лично мне непрозрачность не нравится, поэтому я не стану тратить свое время на глубинное обучение, но я знаю, что оно занимает некое место в структуре интеллекта. Я знаю, что непрозрачные системы способны творить настоящие чудеса, и наш мозг является тому убедительным доказательством.

Но этот довод имеет свои ограничения. Причина, по которой мы прощаем себе наше скудное понимание принципов работы человеческого мозга, заключается в том, что у разных людей мозг работает одинаково, и это позволяет нам общаться с другими людьми, учиться у них, обучать их и мотивировать на нашем родном языке. Будь все наши роботы такими же непрозрачными, как AlphaGo[28 - Компьютерная программа для игры в го, разработана в 2015 г.; получила дальнейшее развитие в программах AlphaGo Master, AlphaGo Zero и AlphaZero.], мы не сможем вести с ними содержательные беседы, что весьма печально. Нам придется переобучать их всякий раз, когда вносятся минимальные изменения в условия задачи или в операционную среду.

Потому, оставляя в стороне эксперименты с «непрозрачными» обучаемыми машинами, я пытаюсь понять их теоретические ограничения и исследовать, каким образом эти ограничения могут быть преодолены. Я изучаю этот вопрос в контексте причинно-следственных задач, которые во многом определяют воззрения ученых на мир и в то же время изобилуют примерами проявления интуиции, вследствие чего мы можем отслеживать прогресс в ходе анализа. В данном контексте мы обнаружили, что существуют некоторые базовые препятствия, которые, если их не преодолеть, не позволят создать подлинный аналог человеческого разума, что бы мы ни делали. Полагаю, подробное описание этих препятствий не менее важно, чем попытки взять их штурмом.

Современные системы машинного обучения работают почти исключительно в статистическом режиме (или режиме модельной слепоты), который во многом аналогичен помещению функции в облако элементов данных. Подобные системы не способны размышлять по принципу «что, если?», а значит, не могут выступать основанием для «сильного» ИИ, то есть для искусственного интеллекта, который имитирует человеческие мышление и компетентность. Чтобы достичь человеческой разумности, обучаемые машины должны руководствоваться своего рода калькой с реальности, моделью наподобие дорожной карты, по которой мы ориентируемся, перемещаясь по незнакомому городу.

Точнее сказать, современные обучаемые машины улучшают свою производительность, оптимизируя параметры потока сенсорных входящих данных, получаемых из окружающей среды. Это небыстрый процесс, аналогичный естественному отбору, который движет дарвиновской эволюцией. Последняя объясняет, как такие виды, как орлы и змеи, обрели превосходное зрение за миллионы лет развития. Однако она не в состоянии объяснить сверхэволюционные процессы, которые позволили людям изобрести и начать производить очки и телескопы всего за какую-то тысячу лет. Люди обладают тем, чего лишены другие виды, а именно ментальными репрезентациями окружающей среды – репрезентациями, которыми возможно манипулировать по желанию, дабы воображать различные альтернативные и гипотетические среды в целях планирования и обучения.

Историки рода Homo Sapiens, скажем Юваль Ной Харари и Стивен Митен[29 - Ю. Харари – израильский историк, автор научно-популярного бестселлера «Sapiens: Краткая история человечества» (2011, рус. пер. 2016); С. Митен – английский археолог и популяризатор науки, автор книги «После ледникового периода: общая история человечества» (2003).], в целом согласны с тем, что решающим фактором, который обеспечил нашим предкам глобальное господство на планете около сорока тысяч лет назад, была способность создавать и хранить ментальные репрезентации окружающей среды, обращаться к этим репрезентациям, искажать их посредством актов воображения и, наконец, отвечать на вопросы типа «Что, если?». Примерами могут служить вопросы интервенционные («Что, если я сделаю то-то и то-то?») и ретроспективные, или контрфактивные («Что, если бы я поступил иначе?»). Ни одна обучаемая машина в наши дни не способна давать ответы на такие вопросы. Более того, большинство обучаемых машин не обладают репрезентациями, из которых можно вывести ответы на подобные вопросы.

Отталкиваясь от причинно-следственного мышления, можно сказать, что для нас почти бесполезны любые формы подгонки кривых, модельной слепоты или статистического вывода, сколь бы сложным ни был процесс подгонки. Мы также выявили теоретические рамки для структурирования указанных ограничений по иерархическому признаку.

На первом уровне находится статистическое мышление, которое способно сообщить лишь о том, как наблюдение одного события изменит ваши взгляды на другие события. Например, что симптом может рассказать о болезни?

Далее располагается второй уровень, который опирается на первый, но не наоборот. Здесь помещаются действия. «Что будет, если мы поднимем цены?» «Что, если ты меня рассмешишь?» Этот второй уровень иерархии требует информации о вмешательствах, недоступной на первом уровне. Данную информацию можно закодировать в графическую модель, которая будет уведомлять, какие переменные реагируют на другие.

Третий уровень иерархии является контрфактуальным. Это язык, употребляемый учеными. «Что, если объект будет вдвое тяжелее?» «Что, если я поступлю иначе?» «Это от аспирина у меня перестала болеть голова или все дело в том, что я пошел спать?» Контрфактуальность занимает верхний уровень с той точки зрения, что ее невозможно вывести логически, даже умей мы предсказывать и предугадывать последствия всех своих действий. Тут необходим дополнительный элемент в форме уравнений, чтобы поведать нам, как переменные реагируют на изменения других переменных.

Одним из венчающих труды достижений в исследованиях причинно-следственных связей является алгоритмизация вмешательств и контрфактуальностей, то есть двух верхних уровней нашей иерархии. Иными словами, когда мы закодировали наше научное знание в модели (пусть даже качественной), налицо алгоритмы, позволяющие изучить модель и определить, возможно ли воспринять конкретный запрос, будь то вмешательство или контрфактуальность, на основе имеющихся данных (а если возможно, то как именно). Эта возможность кардинально изменила само занятие наукой, особенно в таких наукоемких дисциплинах, как социология и эпидемиология, где каузальные модели успели стать вторым языком. Указанные дисциплины трактуют описанную лингвистическую трансформацию как каузальную революцию. Цитируя социолога из Гарварда Гэри Кинга: «За последние несколько десятилетий о причинно-следственных связях стало известно намного больше, чем за всю предшествующую историю вопроса».

Размышляя об успехах машинного обучения и пытаясь экстраполировать их на будущее ИИ, я спрашиваю себя: «Известны ли нам базовые ограничения, которые были обнаружены в области причинно-следственных связей? Готовы ли мы преодолеть теоретические препятствия, мешающие нам переходить с одного уровня иерархии на другой?»

Я рассматриваю машинное обучение как инструмент, позволяющий перейти от данных к вероятностям. Но тогда следует сделать два дополнительных шага, чтобы перейти от вероятностей к реальному пониманию, – два больших шага. Один заключается в том, чтобы предсказывать последствия действий, а второй состоит в освоении контрфактуального воображения. Мы не вправе утверждать, что постигли реальность, если не сделаем эти два шага.

В своей блестящей и проницательной работе «Предвидение и понимание» (1961) философ Стивен Тулмин определил противостояние прозрачности и непрозрачности как ключевое условие осознания сути древнего соперничества между греческими и вавилонскими науками. Согласно Тулмину, вавилонские астрономы были мастерами предсказаний по «черному ящику» и сильно превосходили своих греческих соперников по точности и последовательности небесных наблюдений. Тем не менее наука предпочла креативно-умозрительную стратегию греческих астрономов, которая изобиловала метафорическими образами: круглые трубы, полные огня; малые отверстия, сквозь которые сияет небесный огонь (звезды); полусферическая Земля на спине гигантской черепахи… Именно эта безумная стратегия моделирования, а вовсе не вавилонские экстраполяции, побудила Эратосфена (276–194 годы до н. э.) предпринять один из наиболее творческих экспериментов Античности и вычислить окружность Земли. Подобный эксперимент был попросту невозможен среди вавилонских собирателей данных.

Модельная слепота накладывает внутренние ограничения на когнитивные задачи, которые способен выполнять «сильный» ИИ. Мой общий вывод состоит в том, что сопоставимый с человеческим ИИ нельзя создать только на основе машины с модельной слепотой; он требует симбиотического сотрудничества данных и моделей.

Наука о данных является наукой лишь в той мере, в какой она облегчает интерпретацию данных, – перед нами задача двух тел, связь данных и реальности. Данные сами по себе вряд ли окажутся наукой, какими бы «большими» они ни были и насколько бы искусно ими ни манипулировали. Непрозрачные обучаемые системы могут привести нас в Вавилон, но не в Афины.

Глава 3

Цель, заложенная в машину

Ученый-компьютерщик Стюарт Рассел, наряду с Илоном Маском, Стивеном Хокингом, Максом Тегмарком и многими другими, настаивает на том, что следует уделять повышенное внимание тем потенциальным опасностям, которые сулит создание интеллекта сверхчеловеческого (или даже человеческого) уровня – так называемого ОИИ, общего искусственного интеллекта, чьи запрограммированные цели вовсе не обязательно будут совпадать с нашими собственными.

Ранние работы Рассела были посвящены описанию гипотезы «ограниченной оптимальности» как формального операционального определения интеллекта. Он разработал метод рационального метарассуждения, «суть которого, грубо говоря, заключается в том, что вы выполняете вычисления, которые, по вашим ожиданиям, улучшат качество итогового решения в максимально короткие сроки». Также Стюарт приложил руку к комбинированию теории вероятности с логикой первого порядка, благодаря чему возникла новая и гораздо более эффективная система мониторинга соблюдения условий договора о всеобъемлющем запрещении ядерных испытаний, и к задаче принятия долгосрочных решений (сам он предпочитает давать презентациям по последней теме названия вроде «Жизнь: играть и выигрывать за 20 триллионов ходов»).

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=51801785&lfrom=174836202) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Примечания

1

Американская арт-группа, наибольшая активность которой пришлась на середину 1960-х гг. Аббревиатура USCO расшифровывается как «Наша компания» (Us Company). Группа экспериментировала с «дополненным» кино, визуализацией музыки, инсталляциями и пр. – Здесь и далее, кроме особо оговоренных случаев, примеч. ред.

2

Имеется в виду университетский центр в американском штате Массачусетс.

Все книги на сайте предоставены для ознакомления и защищены авторским правом