Дмитрий Васильевич Фирсенко "Проектирование и строительство многоквартирного жилого дома"

В книге рассмотрены этапы проектирования и строительства многоквартирного жилого дома, руководствуясь Еврокодами и современными строительными правилами и нормами.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785006408609

child_care Возрастное ограничение : 12

update Дата обновления : 21.06.2024

, объём подземной части 1088 м

, объём надземной части здания 11819 м

, размер здания ширина 12 м, длинна 32,4 м, высота 30,4 м, площадь строительства 389 м

площадь строительного участка с учётом возведения второго пятна 800 м

.

1.3 Инженерно-геологические условия строительства

Атырау – рельеф города равнина волнообразного типа. В городе присутствует большой водный участок.

Преобладают пески, под которыми находятся водонепроницаемые породы, местами супесь, суглинок все указанные почвы являются наиболее распространёнными.

Геологическое исследование было произведено с использованием шнекового бурения. Метод обусловлен тем, что в ходе бурения могут встречаться разнообразные породы.

На строительном участке исследования показали разнообразие грунтовых составов:

Верхний слой состоит из гумусированных суглинков (растительный слой) толщиной от 0,3 до 0,4 метра;

Ниже расположены бурого цвета суглинки с переменной консистенцией от твердой до полутвердой. Этот слой, толщиной от 0,4 до 2,7 метров, содержит макропористую структуру с вкраплениями песчаных линз средней крупности, начиная с глубины 1,6 метра и имея полутвердую текстуру;

Гравелистые пески бурого цвета обнаружены под слоем суглинков, формируя линзы внутри суглинков. Эти пески, обладающие средней плотностью и низкой степенью водонасыщения, включают до 41% гальки и гравия;

Исследования не выявили наличие грунтовых вод на участке. Оценка агрессивности грунтов и грунтовых вод к бетонным конструкциям на основе портландцемента показала, что они не агрессивны к классу бетона С25/30, тогда как для железобетонных конструкций грунты классифицируются как слабо и средне агрессивные.

В проекте предусмотрены меры защиты бетонных и железобетонных конструкций от влияния агрессивных компонентов грунта.

Основанием для фундамента является глина твёрдая: плотность грунта р- 2,64т/ м

; сцепление удельное с – 81 кН/м2; внутреннего трения угол – 21 град; деформации модуль Е – 42 Мпа.

Свойства грунта на основании геологических изысканий приведены в таблице 1.2.

Согласно СП РК 2.03.30—2017, в пределах участка в инженерно-геологическом разрезе принимают участие грунты 2 группы.

Таблица 1.3.1- Геология грунтов

1.4 Теплотехнический и светотехнический расчеты

Теплотехнический расчет наружной стены

Для минимизации тепловых потерь в зимний период и обеспечения притока тепла летом в ходе разработки проекта моего здания осуществлено сопоставление характеристик кирпича и газобетона с точки зрения тепловой эффективности. Решение остановилось на использовании газобетонных блоков ввиду их высокой теплоизоляционной способности и легкости, при этом отказавшись от кирпича. Газобетон, благодаря своей легкости и прочности, стал предпочтительным выбором.

Для усиления теплоизоляционных свойств стен предусмотрено наращивание слоя минераловатного изолятора, который фиксируется с помощью специализированных дюбелей или гибких соединений. Важно технологически правильно утеплить наружные стены во избежание создания точки росы и создать условия для проветривания кладки, рекомендуемое расстояние от утеплителя до границы внешней стены не менее 40 мм, что способствует эффективной циркуляции воздуха и предотвращает проникновение влаги в изоляционный слой. Защита утеплителя от ветровой эрозии и влажности обеспечивается за счет использования специальной паропроницаемой пленки.

Такой подход к проектированию утепления зданий не только обеспечивает сохранение тепла и защиту от влаги, но и позволяет сократить расход строительных материалов, что открывает перспективы для расширения проектных возможностей здания.

Рисунок 1.3. Конструкция стены

1) Необходимое сопротивление теплопередаче ограждающих конструкций (кроме светопрозрачных), обеспечивающее санитарно-гигиенические и комфортные условия, вычисляют по следующей формуле.:

где,

n=1

t

= 20 

С

t

= -36 

С

?t

= 4

?

= 8,7

Получаем: требуемое сопротивление материалов стены:

2) Градусо-сутки отопительного периода (ГСОП) необходимо рассчитывать с использованием следующей формулы:

1. ГСОП= (t

 – t

) z

где,

z

=215 сут.

t

=-8,1

С

t

= 20

С

Получаем

ГСОП= (20- (-8,1)) 215=5612 °С сут

3) Определим требуемое приведенное сопротивление теплопередаче исходя из нормативных требований к приведенному сопротивлению теплопередаче по СП РК 2.04-01-2017 согласно формуле:

2.

где,

a = 0,00035

b = 1,4

ГСОП=5612°С·сут

Получаем

м

°С/Вт.

4) Расчет теплозащиты наружной стены.

Таблица 1.3.2 – Схема ограждающей конструкции

Термическое сопротивление R, м·°С/Вт, слоя многослойной ограждающей конструкции, а также однородной (однослойной) ограждающей конструкции следует рассчитывать по следующей формуле:

Все книги на сайте предоставены для ознакомления и защищены авторским правом