ISBN :
Возрастное ограничение : 999
Дата обновления : 03.07.2024
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
plt.savefig(f'image_at_epoch_{epoch:04d}.png')
plt.show()
# Генерация изображений после обучения
noise = tf.random.normal([16, 100])
generate_and_save_images(generator, EPOCHS, noise)
```
Пояснение:
1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.
2. Подготовка данных: Загружаются данные MNIST и нормализуются в диапазоне [-1, 1]. Данные затем разделяются на батчи для обучения.
3. Построение генератора:
– Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 28x28 пикселей.
4. Построение дискриминатора:
– Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.
5. Построение GAN:
– Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей.
6. Обучение GAN:
– GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.
7. Генерация изображений:
– После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.
Этот пример демонстрирует, как создать простую GAN для генерации рукописных цифр из набора данных MNIST. Модель может быть улучшена за счет добавления дополнительных слоев, настройки гиперпараметров и использования более сложных архитектур.
8. Построение сложной GAN для генерации реалистичных изображений
– Задача: Генерация изображений лиц.
Для создания сложной генеративно-состязательной сети (GAN) для генерации реалистичных изображений лиц можно использовать библиотеку TensorFlow и Keras. Мы будем использовать улучшенную архитектуру GAN, известную как DCGAN (Deep Convolutional GAN), которая доказала свою эффективность в создании реалистичных изображений. Набор данных CelebA, содержащий фотографии лиц знаменитостей, является хорошим выбором для этой задачи.
Шаги:
1. Импорт библиотек и модулей.
2. Подготовка данных.
3. Построение генератора.
4. Построение дискриминатора.
5. Построение и компиляция GAN.
6. Обучение GAN.
7. Генерация изображений.
Пример кода:
```python
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import os
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Шаг 1: Импорт библиотек
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import matplotlib.pyplot as plt
import os
# Шаг 2: Подготовка данных
# Загрузка набора данных CelebA
# Этот пример предполагает, что данные находятся в папке 'img_align_celeba/img_align_celeba'
# Скачивание и подготовка данных не входит в код
DATA_DIR = 'img_align_celeba/img_align_celeba'
IMG_HEIGHT = 64
IMG_WIDTH = 64
BATCH_SIZE = 128
BUFFER_SIZE = 60000
def load_image(image_path):
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [IMG_HEIGHT, IMG_WIDTH])
image = (image – 127.5) / 127.5 # Нормализация изображений в диапазоне [-1, 1]
return image
def load_dataset(data_dir):
image_paths = [os.path.join(data_dir, img) for img in os.listdir(data_dir)]
image_dataset = tf.data.Dataset.from_tensor_slices(image_paths)
image_dataset = image_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)
image_dataset = image_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE)
return image_dataset
train_dataset = load_dataset(DATA_DIR)
# Шаг 3: Построение генератора
def build_generator():
model = models.Sequential()
model.add(layers.Dense(8 * 8 * 256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((8, 8, 256)))
assert model.output_shape == (None, 8, 8, 256) # Убедитесь, что выходная форма такая
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
assert model.output_shape == (None, 16, 16, 128)
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
assert model.output_shape == (None, 32, 32, 64)
model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 64, 64, 3)
return model
# Шаг 4: Построение дискриминатора
def build_discriminator():
model = models.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[64, 64, 3]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
Все книги на сайте предоставены для ознакомления и защищены авторским правом