Юрий Степанович Почанин "Современные системы накопления энергии"

В книге описаны современные системы накопления энергии и их роль в повышении эффективности гибридных электростанций, в новых возможностях электрического транспорта, в снижении экологической нагрузки промышленных предприятий на окружающую среду. Описаны принципы действия основных элементов следующих накопительных систем энергии: электрохимических, электромагнитных, криогенных, гравитационных, кинетических и алюмоводородных. Описаны водородные топливные элементы и их использование в энергетике. Даны характеристика и практическое применение тяговых аккумуляторов для электрического транспорта.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 16

update Дата обновления : 09.07.2024


В России на базе Национальной технологической инициативы (НТИ) в дорожных картах рынка Автонет определены технологические барьеры (запросы) к накопителям энергии для электротранспорта. Накопитель энергии должен:

–обеспечивать пробег в 600 км и более на одной зарядке;

–время заряда не более 3 мин (до 80%);

–количество циклов заряда не менее 20 000;

–температурный режим –50…+65°С)

В то же время для легковых автомобилей личного пользования к 2025 г. определены следующие требования к батарее (в сборе для одной ячейки:

–энергоемкость не ниже 350 Вт·ч/кг;

–удельная плотность запасаемой энергии не менее 800 Вт·ч/л;

–мощность- (при +25°С/ при –25°С) 1400/1000 Вт/кг;

–ток заряда, 300 А;

–циклируемость более 2000 циклов;

–стоимость, менее $100/кВт·ч;

–безопасность.

Данные параметры накопителя обеспечивают эксплуатационные и коммерческие характеристики для электромобилей со сроком активной эксплуатации до 10 лет.

Еще одной удивительной особенностью промышленных накопителей энергии является их совместимость с фотоэлектрическими установками (ФЭУ). Это преимущество позволяет предприятиям получать выгоду от выработки возобновляемой энергии, а также снижать зависимость от электросети, сокращать расходы и достигать целей устойчивого развития.

По мере внедрения новых технологий, таких как распределенная генерация, электромобили и "умные" счетчики, инфраструктура будет нуждаться в значительной корректировке энергопотребления.

Глава 2. Архитектура систем накопителей электрической энергии

. Согласно ГОСТ Р 58092.2.1-2020 “Системы накопления электрической энергии (СНЭЭ). Параметры установок и методы испытаний. Общее описание” содержит следующую архитектуру, рис. 2.1, а структура СНЭЭ с одной точкой подключения напряжения к сети (ТПН), рис.2.2, с двумя ТПН, рис.2.3.

Рис.2.1. Архитектура СНЭЭ

Рис. 2.2 Структура СНЭЭ с одним типом ТПН

Накопитель электрической энергии (НЭЭ) согласно ГОСТ Р 58092.1-2018 «Системы накопления электрической энергии (СНЭЭ). Термины и определения», представляет собой установку с определенными границами, подключенная к электрической сети, включающая как минимум один накопитель электрической энергии, которая извлекает электрическую энергию из электроэнергетической системы, хранит эту энергию внутри себя в какой-либо форме и отдает электрическую энергию обратно в электроэнергетическую систему и которая включает в себя инженерные сооружения, оборудование преобразования энергии и связанное с ними вспомогательное оборудование.

Обычно СНЭЭ включает в себя несколько НЭЭ (аккумуляторов или др.) и множество иных элементов

Рис.2.3. Структура СНЭЭ с двумя типами ТПН

Размещение подсистем СНЭЭ может быть выполнено следующим образом, рис.2.4.

Рис.2.4. Пример размещения подсистем СНЭЭ

К основным функциям СНЭЭ можно отнести:

1.Выдача или потребление активной мощности. Используя эту функцию, можно найти направления применения СНЭЭ, а именно: выравнивание графика нагрузки, регулирование частоты, интеграция ВИЭ, бесперебойное питание и др.

2. Выдача или потребление реактивной мощности. При управлении реактивной мощностью энергия носителей не используется, задействуется лишь преобразователь и конденсатор в его составе.

3. Компенсации не симметрии.

4. Компенсация не синусоидальности.

Возможные места установки СНЭЭ в энергосистеме представлены на рис. 2.5

Рис. 2.5. Возможные места установки СНЭЭ в энергосистеме

Классификация направлений применения СНЭЭ по соотношению энергоемкости к мощности СНЭЭ представлена на рис.2.6, а по типу энергосистемы- на рис. 2.7.

Рис.2.6. Классификация направлений применения СНЭЭ

Рис. 2.7. Классификация по типу энергосистемы

СНЭЭ обеспечивает эффективность работы ВИЭ в энергосистеме:

1.Выравнивание неравномерности генерацию

2. Баланс электроэнергии и мощности.

3. Устойчивость параллельной работы.

4. Качество электроэнергии.

5.Оптимальное распределение загрузки.

6. Резервирование и повышение надежности.

Основные эксплуатационные показатели, которыми описываются накопители энергии вообще:

1.Удельная энергетическая емкость.

2. Время, затрачиваемое на накопление и рассеивание в нагрузке.

3. Объем (габариты) и масса накопителя.

4. Сроки его хранения и безопасность эксплуатации.

5. Возможность вторичного использования энергоносителя, представленного в той или иной форме.

Первый из приведенных показателей измеряется в специальных единицах (для электрической и электрохимической разновидности это будут кВт в час/кг или плотность накопления энергии).

Большое внимание уделяется безопасности хранения и использования накопленного энергоносителя. Особую важность этот вопрос приобретает при обращении с кислотными электролитами, вращающимися маховиками (кинетические накопители) и с охлажденным воздухом.

Основными критериями устройств накопления энергии, необходимыми для конкретного применения являются:

–количество энергии с точки зрения удельной энергии и плотности энергии;

–электрическая мощность, т.е. требуемая электрическая нагрузка;

–объем и масса;

–надежность;

–долговечность;

–безопасность;

–стоимость;

–возможность вторичной переработки;

–воздействие на окружающую среду.

При выборе устройств накопления энергии следует учитывать следующие характеристики:

–удельная мощность;

–емкость накопителя;

–удельная энергия;

–время отклика;

–эффективность;

–скорость саморазряда / циклы зарядки;

–чувствительность к теплу;

–срок службы заряда-разряда;

Все книги на сайте предоставены для ознакомления и защищены авторским правом