Джейд Картер "Библиотеки Python Часть 2. Практическое применение"

grade 5,0 - Рейтинг книги по мнению 70+ читателей Рунета

От анализа больших данных и машинного обучения до автоматизации рутинных процессов и создания интерактивных визуализаций – эта часть станет вашим практическим путеводителем. Вы узнаете, как распределенно обрабатывать данные с помощью Dask и PySpark, строить динамические дашборды с Plotly и Dash, оптимизировать производительность моделей с Cython, и разрабатывать высоконагруженные приложения с использованием Asyncio и CUDA. Кроме того, особое внимание уделено автоматизации задач, включая парсинг данных, обработку документов и создание рабочих процессов с Airflow. Визуализация геоданных, работа с изображениями и звуком, а также современные подходы к тестированию и развертыванию приложений помогут вам интегрировать Python в самые разнообразные проекты. Эта часть предназначена для разработчиков, стремящихся расширить свои навыки и внедрять Python в практические сферы, требующие высокую производительность, автоматизацию и гибкость.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 29.01.2025


Column('id', Integer, primary_key=True),

Column('user_id', Integer),

Column('action', String),

Column('timestamp', DateTime)

)

metadata.create_all(engine)

# Добавление данных

with engine.connect() as conn:

conn.execute(activity_log.insert(), [

{'user_id': 1, 'action': 'login', 'timestamp': datetime(2025, 1, 1, 10, 0)},

{'user_id': 1, 'action': 'purchase', 'timestamp': datetime(2025, 1, 1, 10, 5)},

{'user_id': 2, 'action': 'login', 'timestamp': datetime(2025, 1, 1, 11, 0)},

{'user_id': 1, 'action': 'logout', 'timestamp': datetime(2025, 1, 1, 10, 10)},

{'user_id': 2, 'action': 'purchase', 'timestamp': datetime(2025, 1, 1, 11, 5)},

{'user_id': 2, 'action': 'logout', 'timestamp': datetime(2025, 1, 1, 11, 10)}

])

# Чтение данных

activity_df = pd.read_sql("SELECT * FROM activity_log", engine)

# Подсчет количества действий по пользователям

user_activity = activity_df.groupby('user_id')['id'].count().reset_index()

user_activity.columns = ['user_id', 'action_count']

# Поиск самого активного пользователя

most_active_user = user_activity.loc[user_activity['action_count'].idxmax()]

print(most_active_user)

```

Результат:

```

user_id 1

action_count 3

```

Задача 8: Подсчет действий по типу

Описание: Для каждого типа действия из таблицы `activity_log` подсчитайте, сколько раз оно выполнялось.

Решение:

```python

# Подсчет количества каждого типа действия

action_counts = activity_df['action'].value_counts().reset_index()

action_counts.columns = ['action', 'count']

print(action_counts)

```

Результат:

```

action count

0 login 2

1 purchase 2

2 logout 2

```

Задача 9: Анализ временных меток

Описание: Определите, в какие часы дня пользователи наиболее активны.

Решение:

```python

# Извлечение часа из временных меток

activity_df['hour'] = activity_df['timestamp'].dt.hour

# Подсчет действий по часам

hourly_activity = activity_df.groupby('hour')['id'].count().reset_index()

hourly_activity.columns = ['hour', 'action_count']

print(hourly_activity)

```

Результат:

```

hour action_count

0 10 3

1 11 3

```

Задача 10: Создание таблицы доходов от пользователей

Описание: Используя таблицу `sales`, определите, сколько дохода принёс каждый пользователь, и сохраните результаты в таблицу `user_revenues`.

Решение:

```python

# Добавление данных о продажах с указанием user_id

with engine.connect() as conn:

conn.execute(sales.insert(), [

{'product': 'Laptop', 'price': 1000, 'quantity': 1, 'user_id': 1},

{'product': 'Phone', 'price': 500, 'quantity': 2, 'user_id': 1},

{'product': 'Tablet', 'price': 300, 'quantity': 3, 'user_id': 2}

])

# Чтение данных из sales

sales_df = pd.read_sql("SELECT * FROM sales", engine)

# Расчёт дохода для каждого пользователя

sales_df['revenue'] = sales_df['price'] * sales_df['quantity']

user_revenues = sales_df.groupby('user_id')['revenue'].sum().reset_index()

# Сохранение в новую таблицу

user_revenues.to_sql('user_revenues', engine, if_exists='replace', index=False)

# Проверка результатов

saved_user_revenues = pd.read_sql("SELECT * FROM user_revenues", engine)

print(saved_user_revenues)

```

Результат:

```

user_id revenue

0 1 2000

1 2 900

```

Задача 11: Поиск последнего действия пользователей

Описание:Для каждого пользователя из таблицы `activity_log` найдите его последнее действие.

Решение:

```python

# Поиск последнего действия

last_actions = activity_df.sort_values('timestamp').groupby('user_id').last().reset_index()

last_actions = last_actions[['user_id', 'action', 'timestamp']]

print(last_actions)

```

Все книги на сайте предоставены для ознакомления и защищены авторским правом