Джейд Картер "Библиотеки Python Часть 2. Практическое применение"

grade 5,0 - Рейтинг книги по мнению 70+ читателей Рунета

От анализа больших данных и машинного обучения до автоматизации рутинных процессов и создания интерактивных визуализаций – эта часть станет вашим практическим путеводителем. Вы узнаете, как распределенно обрабатывать данные с помощью Dask и PySpark, строить динамические дашборды с Plotly и Dash, оптимизировать производительность моделей с Cython, и разрабатывать высоконагруженные приложения с использованием Asyncio и CUDA. Кроме того, особое внимание уделено автоматизации задач, включая парсинг данных, обработку документов и создание рабочих процессов с Airflow. Визуализация геоданных, работа с изображениями и звуком, а также современные подходы к тестированию и развертыванию приложений помогут вам интегрировать Python в самые разнообразные проекты. Эта часть предназначена для разработчиков, стремящихся расширить свои навыки и внедрять Python в практические сферы, требующие высокую производительность, автоматизацию и гибкость.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 29.01.2025


fig.update_layout(

title='Продажи по категориям товаров',

xaxis_title='Категории',

yaxis_title='Сумма продаж ($)',

template='plotly_dark'

)

fig.show()

```

Особенности:

– Используем `go.Bar` для построения столбчатого графика.

– Цвет столбцов задаётся через параметр `marker`.

Построение комбинированного графика

Иногда нужно совмещать разные типы графиков на одном рисунке. Рассмотрим пример, где на одном графике отображаются продажи в виде столбцов и прибыль в виде линии.

```python

profit = [300, 500, 200, 400, 350]

fig = go.Figure()

fig.add_trace(go.Bar(

x=categories,

y=sales,

name='Sales',

marker=dict(color='blue')

))

fig.add_trace(go.Scatter(

x=categories,

y=profit,

mode='lines+markers',

name='Profit',

line=dict(color='green', width=2)

))

fig.update_layout(

title='Продажи и прибыль по категориям товаров',

xaxis_title='Категории',

yaxis_title='Сумма ($)',

barmode='group',

template='plotly_white'

)

fig.show()

```

Что добавлено:

– Комбинация `Bar` и `Scatter` позволяет визуализировать данные разных типов.

– Параметр `barmode='group'` размещает столбцы по группам, чтобы они не перекрывались.

Построение круговой диаграммы

Для отображения долей в процентах часто используется круговая диаграмма. Например, распределение продаж по категориям.

```python

fig = go.Figure()

fig.add_trace(go.Pie(

labels=categories,

values=sales,

hole=0.3 # Полудонат (дырка в центре)

))

fig.update_layout(

title='Распределение продаж по категориям',

template='plotly_white'

)

fig.show()

```

Особенности:

– Используем `go.Pie` для построения круговой диаграммы.

– Параметр `hole` задаёт размер центральной части, превращая график в "пончиковую" диаграмму.

Построение тепловой карты

Тепловые карты полезны для отображения матриц данных, например, уровня продаж в разных регионах и месяцах.

```python

import numpy as np

regions = ['North', 'South', 'East', 'West']

months = ['January', 'February', 'March', 'April']

sales_data = np.random.randint(100, 1000, size=(4, 4))

fig = go.Figure(data=go.Heatmap(

z=sales_data,

x=months,

y=regions,

colorscale='Viridis' # Цветовая схема

))

fig.update_layout(

title='Уровень продаж по регионам и месяцам',

xaxis_title='Месяцы',

yaxis_title='Регионы'

)

fig.show()

```

Объяснение:

– Используем `go.Heatmap` для отображения данных в виде тепловой карты.

– Параметр `colorscale` задаёт цветовую палитру, визуально усиливая различия между значениями.

Все книги на сайте предоставены для ознакомления и защищены авторским правом