978-5-0013-9370-2
ISBN :Возрастное ограничение : 12
Дата обновления : 14.06.2023
, s
, …) = ?
?
R (s
), где ? – коэффициент дисконтирования, а R – функция вознаграждения, описывающая желательность состояния. Наивное применение этой модели редко согласуется с оценкой реальными индивидами желательности нынешнего и будущего вознаграждений. Тщательный анализ см. в статье: Shane Frederick, George Loewenstein, and Ted O’Donoghue, “Time discounting and time preference: A critical review,” Journal of Economic Literature 40 (2002): 351–401.]. Несмотря на повсеместную распространенность предположения о «полезности как сумме вознаграждений» – восходящего по меньшей мере к XVIII в., к «гедонистическому исчислению» Джереми Бентама, основателя утилитаризма, – допущение стационарности, на котором оно основано, необязательно является свойством рационального агента. Стационарность исключает также вероятность того, что чьи-либо предпочтения могут меняться со временем, тогда как наш опыт свидетельствует об обратном.
Несмотря на разумность аксиом и важность выводов, которые из них следуют, на теорию полезности обрушивается шквал критики с тех самых пор, как она получила широкую известность. Некоторые отвергают ее за то, что она, предположительно, сводит все к деньгам и эгоизму. (Некоторые французские авторы презрительно называли эту теорию «американской»[30 - Морис Алле, французский экономист, предложил сценарий принятия решения, в котором человек последовательно нарушает аксиомы фон Неймана – Моргенштерна: Maurice Allais, “Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’еcole amеricaine,” Econometrica 21 (1953): 503–46.], несмотря на то что она уходит корнями во французскую мысль.) Действительно, что может быть разумнее, чем мечтать прожить жизнь в самоотречении, желая лишь уменьшить страдания других. Альтруизм заключается попросту в том, чтобы придавать существенный вес благополучию других при оценке любого конкретного будущего.
Другой комплекс возражений связан с трудностью получения необходимой оценки ценности возможностей и полезностей и их перемножения для расчета ожидаемой полезности. При этом просто смешиваются две разные вещи: выбор рационального действия и выбор его путем вычисления ожидаемых полезностей. Например, если вы пытаетесь ткнуть пальцем себе в глаз, веко опускается, чтобы защитить глазное яблоко; это рационально, но никакие расчеты ожидаемой полезности этому не сопутствуют. Можете также представить, что катитесь на велосипеде без тормозов вниз по склону и имеете возможность выбирать, врезаться в одну бетонную стену на скорости 16 км/ч или в другую, ниже по склону, на скорости 32 км/ч. Что вы предпочтете? Если вы выбрали 16 км/ч, мои поздравления! Вы вычисляли ожидаемую полезность? Вряд ли. Тем не менее выбор скорости 16 км/ч рационален. Это следует из двух базовых предположений: во-первых, что вы предпочитаете менее серьезные травмы более серьезным, во-вторых, что при любой тяжести травмы увеличение скорости столкновения повышает вероятность превышения этого уровня. Из этих двух предположений математически следует (совершенно без вычисления конкретных числовых значений), что столкновение на скорости 16 км/ч имеет более высокую ожидаемую полезность, чем столкновение на скорости 32 км/ч[31 - Введение в анализ принятия неколичественных решений см. в: Michael Wellman, “Fundamental concepts of qualitative probabilistic networks,” Artificial Intelligence 44 (1990): 257–303.]. В общем, максимизация ожидаемой полезности необязательно требует вычисления каких-либо ожиданий или полезностей. Это чисто внешнее описание рациональной сущности.
Еще одна критика теории рациональности лежит в определении места принятия решений, то есть что рассматривается в качестве агентов. Кажется очевидным, что агентами являются люди. Но как быть с семьями, племенами, корпорациями, цивилизациями, государствами? Если обратиться к социальным насекомым, таким как муравьи, можно рассматривать индивидуального муравья как интеллектуального агента, или же интеллект связан со всей муравьиной колонией, с неким синтетическим мозгом, состоящим из мозгов и тел многих муравьев, взаимосвязанных феромонными сигналами, в отличие от сигналов электрических? С эволюционной точки зрения так думать о колонии муравьев, вероятно, более продуктивно, так как муравьи тесно связаны. Отдельно взятые муравьи, как и другие социальные насекомые, по-видимому, не обладают инстинктом самосохранения, в отличие от инстинкта сохранения колонии: они всегда вступают в битву против захватчиков, даже ценой собственной жизни. Иногда и люди поступают так же, чтобы защитить совсем чужих людей. Виду полезно наличие определенной доли индивидуумов, способных пожертвовать собой в бою, или отправиться в экспедиции в неизвестные земли, или воспитывать чужое потомство. В подобных случаях анализ рациональности, основанный на интересах одного индивида, очевидно упускает из виду нечто существенное.
Другие принципиальные возражения против теории полезности носят эмпирический характер – они опираются на экспериментальные свидетельства, заставляющие предположить, что люди иррациональны. Мы систематически не угождаем аксиомам[32 - Я вернусь к рассмотрению свидетельств человеческой иррациональности в главе 9. Основные работы по данной теме: Allais, “Le comportement”; Daniel Ellsberg, Risk, Ambiguity, and Decision (PhD thesis, Harvard University, 1962); Amos Tversky and Daniel Kahneman, “Judgment under uncertainty: Heuristics and biases,” Science 185 (1974): 1124–31.]. Я сейчас не ставлю своей целью отстоять теорию полезности как формальную модель человеческого поведения. Действительно, люди не всегда могут вести себя рационально. Наши предпочтения распространяются на всю собственную дальнейшую жизнь, жизни детей и внуков, а также других существ, которые живут сейчас или будут жить в дальнейшем. Тем не менее мы не можем даже сделать правильные ходы на шахматной доске, в крохотном и простом пространстве с четкими правилами и очень коротким горизонтом планирования. Причина не в иррациональности наших предпочтений, а в сложности проблемы принятия решения. В огромной мере наша когнитивная структура занята тем, что компенсирует несоответствие маленького медленного мозга непостижимо громадной сложности проблемы принятия решения, с которой мы постоянно сталкиваемся.
Таким образом, в то время как было бы весьма неразумно основывать теорию выгодного для нас ИИ на предположении, что люди рациональны, можно вполне заключить, что взрослый человек имеет довольно последовательные предпочтения относительно своей дальнейшей жизни. А именно – если бы вы имели возможность посмотреть два фильма, каждый из которых достаточно подробно описывает вашу возможную будущую жизнь, вы могли бы сказать, какой вариант предпочитаете, или выразить безразличие к обоим[33 - Следует понимать, что это мысленный эксперимент, который невозможно поставить на практике. Выбор разных вариантов будущего никогда не предстает во всех деталях, и люди никогда не имеют роскошной возможности подробнейшим образом исследовать и оценить эти варианты, прежде чем выбирать. Мы получаем лишь краткие резюме, скажем, «библиотекарь» или «шахтер». Когда человек делает такой выбор, то в действительности ему предлагается сравнить два распределения вероятности по полным вариантам будущего, один из которых начинается с выбора «библиотекарь», а другой – с выбора «шахтер», причем каждое распределение предполагает оптимальные действия со стороны данного человека в рамках каждого будущего. Очевидно, сделать такой выбор непросто.].
Это, возможно, чересчур сильное заявление, если наша единственная цель – гарантировать, чтобы развитие интеллектуальных машин не обернулось катастрофой для человеческой расы. Сама идея катастрофы предполагает жизнь, со всей определенностью не являющуюся предпочитаемой. Таким образом, чтобы избежать катастрофы, нам достаточно заявить, что взрослые люди способны опознать катастрофическое будущее, если оно показано подробно. Конечно, предпочтения людей имеют намного более детальную и, предположительно, проверяемую структуру, чем простое «отсутствие катастрофы лучше, чем катастрофа».
В действительности теория благотворного ИИ может принять во внимание непоследовательность человеческих предпочтений, но непоследовательную часть предпочтений невозможно удовлетворить, и ИИ здесь совершенно бессилен. Предположим, например, что ваши предпочтения в отношении пиццы нарушают аксиому транзитивности:
РОБОТ. Добро пожаловать домой! Хотите пиццу с ананасами?
ВЫ. Нет, пора бы знать, что я больше люблю обычную.
РОБОТ. Хорошо, обычная пицца уже готовится!
ВЫ. Нет уж, мне больше хочется пиццу с сосисками.
РОБОТ. Прошу прощения! Пожалуйста, вот пицца с сосисками!
ВЫ. Вообще-то, лучше уж с ананасами, чем с сосисками.
РОБОТ. Это мой промах, вот вам с ананасами!
ВЫ. Я ведь уже сказал, что мне больше нравится обычная пицца, а не с ананасами.
Нет такой пиццы, которой робот мог бы вас осчастливить, потому что вы всегда предпочитаете какую-нибудь другую. Робот может удовлетворить только последовательную часть ваших предпочтений – например, если вы предпочитаете все три вида пиццы отсутствию пиццы. В этом случае услужливый робот мог бы подать вам любую из трех пицц, таким образом удовлетворив ваше предпочтение избежать «отсутствия пиццы» и предоставив вам на досуге обдумывать свои раздражающе непоследовательные предпочтения относительно ее ингредиентов.
Рациональность на двоих
Базовая идея, что рациональный агент действует так, чтобы максимизировать ожидаемую полезность, достаточно проста, даже если в действительности добиться этого сложно до невозможности. Теория, однако, применима только в случае, если агент действует в одиночку. При более чем одном агенте идея, что возможно – хотя бы в принципе – приписать вероятности разным результатам его действий, становится проблематичной. Дело в том, что теперь имеется часть мира – другой агент, – пытающаяся предугадать, какое действие вы собираетесь предпринять, и наоборот, поэтому становится неочевидной оценка вероятности того, как намерена вести себя эта часть мира. В отсутствии же вероятностей определение рационального действия как максимизации ожидаемой полезности неприменимо.
Таким образом, как только подключается кто-то еще, агенту требуется другой способ принятия рациональных решений. Здесь вступает в действие теория игр. Несмотря на название, теория игр необязательно занимается играми в обычном понимании; это попытка распространить понятие рациональности на ситуации с участием многих агентов. Очевидно, что это важно для наших целей, поскольку мы (пока) не планируем строить роботов, которые будут жить на необитаемых планетах других звездных систем; мы собираемся поместить роботов в наш мир, населенный нами.
Чтобы прояснить, зачем нам нужна теория игр, рассмотрим простой пример: Алиса и Боб играют во дворе в футбол (рис. 3). Алиса готовится пробить пенальти, Боб стоит на воротах. Алиса собирается направить мяч справа или слева от Боба. Поскольку она правша, для нее проще и надежнее бить вправо от Боба. У Алисы мощный удар, и Боб знает, что должен броситься в одну либо в другую сторону – у него не будет времени подождать и узнать, куда летит мяч. Боб мог бы рассуждать так: «У Алисы больше шансов забить гол, если она пробьет справа от меня, поскольку она правша, значит, это она и выберет, и мне нужно броситься вправо». Однако Алиса не дурочка, она может представить этот ход рассуждений Боба и тогда пробьет влево. Поскольку Боб тоже не дурак и поймет, что замыслила Алиса, то бросится влево. Но Алиса умна и способна представить, что Боб думает именно так… В общем, вы поняли. Иными совами, если у Алисы есть рациональный выбор, Боб тоже может его обнаружить, предвосхитить и помешать Алисе забить гол, так что выбор, в принципе, не может быть рациональным.
Еще в 1713 г. – опять-таки в ходе анализа азартных игр – был найден выход из этого затруднительного положения[34 - Первое упоминание о рандомизированной стратегии в играх: Pierre Rеmond de Montmort, Essay d’analyse sur les jeux de hazard, 2nd ed. (Chez Jacques Quillau, 1713). В книге упоминается некий монсеньор де Вальдграв в качестве автора оптимального рандомизированного решения для карточной игры Ле Гер. Сведения о личности Вальдграва раскрываются в статье: David Bellhouse, “The problem of Waldegrave,” Electronic Journal for History of Probability and Statistics 3 (2007).]. Хитрость состоит в том, чтобы выбирать не какое-либо действие, а рандомизированную стратегию. Например, Алиса может выбрать стратегию «бить правее Боба с вероятностью 55 % и левее с вероятностью 45 %». Боб может выбрать «кидаться вправо с вероятностью 60 % и влево с вероятностью 40 %». Каждый мысленно бросает монету с соответствующей тенденцией перед каждым действием, чтобы не отклониться от своих намерений. Действуя непредсказуемо, Алиса и Боб избегают ограничений, описанных в предыдущем абзаце. Даже если Боб выяснит, в чем состоит рандомизированная стратегия Алисы, он бессилен справиться с ней, если у него нет «хрустального шара».
Следующий вопрос: какими должны быть вероятности? Рационален ли выбор Алисы, 55 % на 45 %? Конкретные значения зависят от того, насколько выше точность Алисы при ударе направо от Боба, насколько успешно Боб берет мяч, когда кидается вправо, и т. д. (Полный анализ см. в сносках[35 - Задача полностью определяется, если задать вероятность того, что Алиса забивает гол в каждом из следующих четырех случаев: если она бьет вправо от Боба, и Боб бросается вправо или влево, и если она бьет влево от Боба, и он бросается вправо или влево. В данном случае эти вероятности составляют 25, 70, 65 % и 10 % соответственно. Предположим, что стратегия Алисы – бить вправо от Боба с вероятностью p и влево с вероятностью 1 – p, тогда как Боб бросается вправо с вероятностью q и влево с вероятностью 1 – q. Выигрыш Алисы: U
= 0,25 pq + 0,70 p (1 ? q) + 0,65 (1 ? p)q + 0,10 (1 ? p) (1 ? q), Боба: U
= ?U
. В равновесии ?U
/?p = 0 and ?U
/?q = 0, что дает p = 0,55 и q = 0,60.].) Общий критерий, впрочем, очень прост:
1. Стратегия Алисы – лучшая, которую она может выбрать при условии, что Боб неподвижен.
2. Стратегия Боба – лучшая, которую он может выбрать при условии, что Алиса неподвижна.
Если выполняются оба условия, мы говорим, что стратегии находятся в равновесии. Такого рода равновесие называется равновесием Нэша в честь Джона Нэша, который в 1950 г. в возрасте 22 лет доказал, что оно существует для любого числа агентов с любыми рациональными предпочтениями, независимо от правил игры. После нескольких десятилетий борьбы с шизофренией Нэш выздоровел и в 1994 г. получил за эту работу Нобелевскую премию за достижения в экономических науках.
В футбольном матче Алисы и Боба равновесие лишь одно. В других случаях их может быть несколько. Таким образом, концепция равновесия Нэша, в отличие от решений на основе ожидаемой полезности, не всегда ведет к уникальным рекомендациям о том, как действовать.
Что еще хуже, бывают ситуации, когда равновесие Нэша может приводить к крайне нежелательным результатам. Одним из таких случаев является знаменитая «дилемма заключенного», название которой дал в 1950 г. научный руководитель Нэша Альберт Таккер[36 - Исходную задачу теории игр предложили Меррил Флуд и Мелвин Дрешер в RAND Corporation. Такер увидел матрицу выигрышей, зайдя к ним в кабинет, и предложил сопроводить ее «историей».]. Игра представляет собой абстрактную модель печально распространенных в реальном мире ситуаций, когда взаимодействие было бы лучше во всех смыслах, но люди тем не менее выбирают взаимное уничтожение.
Вот как работает «дилемма заключенного». Алиса и Боб подозреваются в преступлении и оказываются в одиночном заключении. У каждого есть выбор: признать вину и заложить подельника или отказаться давать показания[37 - Специалисты теории игр обычно говорят, что Алиса и Боб смогли сотрудничать друг с другом (отказались давать показания) или предать подельника. Мне эти определения кажутся вводящими в заблуждение, поскольку «сотрудничество друг с другом» не тот выбор, который каждый агент может сделать индивидуально, а также из-за влияния общепринятого выражения «сотрудничать с полицией», когда за сотрудничество можно получить более легкий приговор и т. д.]. Если оба откажутся, то будут обвинены в менее серьезном преступлении и отсидят два года; если оба сознаются, то получат более серьезное обвинение и сядут на 10 лет; если один сознается, а второй запирается, то сознавшийся выходит на свободу, а второй садится на 20 лет.
Итак, Алиса размышляет: «Если Боб решит признаться, то и мне следует признаваться (10 лет лучше, чем 20); если он планирует запираться, то мне лучше заговорить (выйти на свободу лучше, чем провести два года в тюрьме); так или иначе, нужно признаваться». Боб мыслит так же. В результате оба дают признательные показания и сидят 10 лет, тогда как, совместно отказавшись признавать вину, они могли бы отсидеть только два года. Проблема в том, что совместный отказ не является равновесием Нэша, потому что у каждого есть стимул предать другого и освободиться путем признания.
Заметьте, что Алиса могла бы рассуждать следующим образом: «Как бы я ни мыслила, Боб тоже будет размышлять. В конце концов мы выберем одно и то же. Поскольку совместный отказ лучше совместного признания, нам нужно молчать». Эта разновидность рассуждения признает, что, будучи рациональными агентами, Алиса и Боб сделают согласующийся выбор, а не два независимых. Это лишь один из многих подходов, опробованных в теории игр в попытке получить менее удручающие решения «дилеммы заключенного»[38 - Интересное решение на основе доверия для дилеммы заключенного и других игр см.: Joshua Letchford, Vincent Conitzer, and Kamal Jain, “An ‘ethical’ game-theoretic solution concept for two-player perfect-information games,” in Proceedings of the 4th International Workshop on Web and Internet Economics, ed. Christos Papadimitriou and Shuzhong Zhang (Springer, 2008).].
Другой знаменитый пример нежелательного равновесия – трагедия общих ресурсов, впервые проанализированная в 1833 г. английским экономистом Уильямом Ллойдом[39 - Источник трагедии общих ресурсов: William Forster Lloyd, Two Lectures on the Checks to Population (Oxford University, 1833).], хотя дал ей название и привлек к ней внимание всего мира эколог Гаррет Хардин в 1968 г.[40 - Современное рассмотрение темы в контексте глобальной экологии: Garrett Hardin, “The tragedy of the commons,” Science 162 (1968): 1243–48.] Проблема возникает, если несколько человек могут использовать ограниченный и медленно восполняемый ресурс – например, общее пастбище или рыбный пруд. В отсутствие любых социальных или юридических ограничений единственное равновесие Нэша для эгоистичных (неальтруистичных) агентов заключается в том, чтобы каждый потреблял как можно больше, что вело бы к быстрому исчерпанию ресурса. Идеальное решение, при котором все пользуются ресурсом так, чтобы общее потребление было устойчивым, не является равновесием, поскольку у каждого индивида есть стимул хитрить и брать больше справедливой доли – перекладывая издержки на других. На практике, конечно, люди предпринимают меры во избежание этой ситуации, создавая такие механизмы, как квоты и наказания или схемы ценообразования. Они могут это сделать, потому что не ограничены в решении о том, сколько потреблять; кроме того, они имеют возможность принять решение осуществлять коммуникацию. Расширяя проблему принятия решения подобным образом, мы находим выходы, лучшие для каждого.
Эти и многие другие примеры иллюстрируют тот факт, что распространение теории рациональных решений на несколько агентов влечет за собой много видов интересного и сложного поведения. Это крайне важно еще и потому, очевидно, что людей на свете больше одного. Скоро к ним присоединятся интеллектуальные машины. Незачем говорить, что мы должны достичь взаимной кооперации, влекущей за собой пользу для людей, а не взаимное уничтожение.
Компьютеры
Рациональное определение интеллектуальности – первый компонент в создании интеллектуальных машин. Вторым компонентом является машина, в которой это определение может быть реализовано. По причинам, которые скоро станут очевидными, эта машина – компьютер. Это могло бы быть нечто другое, например мы могли бы попытаться сделать интеллектуальные машины на основе сложных химических реакций или путем захвата биологических клеток[41 - Весьма вероятно, что, даже если бы мы попытались создать интеллектуальные машины на основе химических реакций или биологических клеток, объединения этих элементов оказались бы реализацией машины Тьюринга нетрадиционным способом. Вопрос о том, является ли объект универсальным компьютером, никак не связан с вопросом о том, из чего он сделан.], но устройства, созданные для вычислений, начиная с самых первых механических калькуляторов всегда казались своим изобретателям естественным вместилищем разума.
Мы сегодня настолько привыкли к компьютерам, что едва замечаем их невероятные возможности. Если у вас есть десктоп, ноутбук или смартфон, посмотрите на него: маленькая коробочка с возможностью набора символов. Одним лишь набором вы можете создавать программы, превращающие коробочку в нечто другое, например, способное волшебным образом синтезировать движущиеся изображения океанских кораблей, сталкивающихся с айсбергами, или других планет, населенных великанами. Набираете еще что-то, и коробочка переводит английский текст на китайский язык; еще что-то – она слушает и говорит, еще – побеждает чемпиона мира по шахматам.
Способность осуществлять любой процесс, который приходит вам в голову, называется универсальностью. Эту концепцию ввел Алан Тьюринг в 1936 г.[42 - Эпохальная статья Тьюринга дает определение понятию, в настоящее время известному как машина Тьюринга, основополагающему в компьютерной науке. Entscheidungsproblem, или проблема принятия решения, в названии статьи есть проблема выбора следования в логике первого порядка: Alan Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings of the London Mathematical Society, 2nd ser., 42 (1936): 230–65.] Универсальность означает, что нам не нужны отдельные машины для вычислений, машинного перевода, шахмат, распознавания речи или анимации: все это делает одна машина. Ваш ноутбук, в сущности, подобен огромным серверам крупнейших IT-компаний – даже тех, которые оборудованы причудливыми специализированными тензорными процессорами для машинного обучения. Он также по сути идентичен всем компьютерным устройствам, которые еще будут изобретены. Ноутбук может выполнять те же самые задачи при условии, что ему хватает памяти; это лишь занимает намного больше времени.
Статья Тьюринга, где вводилось понятие универсальности, стала одной из важнейших когда-либо написанных статей. В ней он рассказал о простом вычислительном устройстве, способном принимать в качестве входного сигнала описание любого другого вычислительного устройства вместе с входным сигналом этого второго устройства и, симулируя операции второго устройства на своем входе, выдавать тот же результат, что выдало второе устройство. Теперь мы называем это первое устройство универсальной машиной Тьюринга. Чтобы доказать его универсальность, Тьюринг ввел точные определения двух новых типов математических объектов: машин и программ. Вместе машина и программа определяют последовательность событий, а именно – последовательность изменений состояния в машине и в ее памяти.
В истории математики новые типы объектов возникают довольно редко. Математика началась с чисел на заре письменной истории. Затем, около 2000 г. до н. э., древние египтяне и вавилоняне стали работать с геометрическими объектами (точками, линиями, углами, областями и т. д.). Китайские математики в течение I тыс. до н. э. ввели матрицы, тогда как группы математических объектов появились лишь в XIX в. Новые объекты Тьюринга – машины и программы – возможно, самые мощные математические объекты в истории. Ирония заключается в том, что сфера математики по большей части не сумела этого признать и с 1940-х гг. и до настоящего времени компьютеры и вычисления остаются в большинстве крупнейших университетов вотчиной инженерных факультетов.
Возникшая область знания – компьютерная наука – последующие 70 лет бурно развивалась, создав великое множество новых понятий, конструкций, методов и применений, а также семь из восьми самых ценных компаний в мире.
Центральным для компьютерной науки является понятие алгоритма – точно определенного метода вычисления чего-либо. Сейчас алгоритмы являются привычным элементом повседневной жизни. Алгоритм вычисления квадратного корня в карманном калькуляторе получает на входе число и выдает на выходе квадратный корень этого числа; алгоритм игры в шахматы принимает позицию на доске и выдает ход; алгоритм поиска маршрута получает стартовое местоположение, целевую точку и карту улиц и выдает более быстрый путь из отправной точки к цели. Алгоритмы можно описывать на английском языке или в виде математической записи, но, чтобы они были выполнены, их нужно закодировать в виде программ на языке программирования. Сложные алгоритмы можно построить, используя простые в качестве кирпичей, так называемые подпрограммы, – например, машина с автопилотом может использовать алгоритм поиска маршрута как подпрограмму, благодаря чему будет знать, куда ехать. Так, слой за слоем, строятся бесконечно сложные программные системы.
Аппаратная часть компьютера также важна, поскольку более быстрые компьютеры с большей памятью позволяют быстрее выполнять алгоритм и включать больше информации. Прогресс в этой сфере хорошо известен, но по-прежнему не укладывается в голове. Первый коммерческий программируемый электронный компьютер, Ferranti Mark I, мог выполнять около 1000 (10
) команд в секунду и имел примерно 1000 байт основной памяти. Самый быстрый компьютер начала 2019 г., Summit, Национальной лаборатории Ок-Ридж в Теннесси выполняет около 10
команд в секунду (в 1000 трлн раз быстрее) и имеет 2,5 ? 10
байт памяти (в 250 трлн раз больше). Этот прогресс стал результатом совершенствования электронных устройств и развития стоящей за ними физики, что позволило добиться колоссальной степени миниатюризации.
Хотя сравнение компьютера и головного мозга, в общем, лишено смысла, замечу, что показатели Summit слегка превосходят емкость человеческого мозга, который, как было сказано, имеет порядка 10
синапсов и «цикл» примерно в 0,01 секунды с теоретическим максимумом около 10
«операций» в секунду. Самым существенным различием является потребление энергии: Summit использует примерно в миллион раз больше энергии.
Предполагается, что закон Мура, эмпирическое наблюдение, что количество электронных компонентов чипа удваивается каждые два года, продолжит выполняться примерно до 2025 г., хотя и немного медленнее. Сколько-то лет скорости ограничены большим количеством тепла, выделяемого при быстрых переключениях кремниевых транзисторов; более того, невозможно значительно уменьшить размеры цепей, поскольку провода и соединения (на 2019 г.) уже не превышают длины в 25 атомов и толщины от пяти до десяти атомов. После 2025 г. нам придется использовать более экзотические физические явления, в том числе устройства отрицательной емкости[43 - Хорошее исследование отрицательной емкости от одного из ее изобретателей: Sayeef Salahuddin, “Review of negative capacitance transistors”, in International Symposium on VLSI Technology, Systems and Application (IEEE Press, 2016).]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/stuart-rassel/sovmestimost-kak-kontrolirovat-iskusstvennyy-intellekt/?lfrom=174836202) на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
notes
Сноски
1
Первое издание моего учебника по ИИ, написанного в соавторстве с Питером Норвигом, в настоящее время директором Google по науке: Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 1st ed. (Prentice Hall, 1995).
2
Робинсон разработал алгоритм разрешения, который может, при наличии времени, доказать любое логическое следствие из комплекса логических утверждений первого порядка. В отличие от предыдущих алгоритмов, он не требует преобразования в пропозиционную логику. J. Alan Robinson, “A machine-oriented logic based on the resolution principle,” Journal of the ACM 12 (1965): 23–41.
3
Артур Самуэль, американский первопроходец компьютерной эры, начал карьеру в IBM. В статье, посвященной его работе с шашками, впервые был использован термин машинное обучение, хотя Алан Тьюринг еще в 1947 г. говорил о «машине, способной учиться на опыте». Arthur Samuel, “Some studies in machine learning using the game of checkers”, IBM Journal of Research and Development 3 (1959): 210?29.
4
Так называемый Отчет Лайтхилла привел к отмене финансирования исследования ИИ везде, кроме Эдинбургского и Сассекского университетов: Michael James Lighthill, “Artificial intelligence: A general survey,” in Artificial Intelligence: A Paper Symposium (Science Research Council of Great Britain, 1973).
Все книги на сайте предоставены для ознакомления и защищены авторским правом