978-5-17-116057-9
ISBN :Возрастное ограничение : 12
Дата обновления : 14.06.2023
27
Вудс, Шнейдер; см. также большой обзор экспертных мнений того времени: «Weather Scientists Optimistic That New Findings Are Near» // The New York Times. 9 September. P. 1.
28
Дайсон.
29
Боннер, Бенгтссон, Вудс, Лейт.
30
Medawar R В. «Expectation and Prediction» // Pluto's Republic. Oxford: Oxford University Press, R 301–304.
31
Изначально Лоренц использовал для описания эффекта образ чайки, а тот образ, который используется сейчас, по-видимому, позаимствован из его работы «Predictability: Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?» и связан с выступлением на ежегодном собрании Американской ассоциации содействия развитию науки в Вашингтоне 29 декабря 1979 года.
32
Йорк.
33
Лоренц, Уайт.
34
«The Mechanics of Vacillation».
35
Перевод С. Я. Маршака.
36
Джордж Херберт; в этом контексте цит. по: Wiener N. «Nonlinear Prediction and Dynamics» // Collected Works with Commentaries / Ed. by R Masani. Cambridge, Mass.: The M. I. T. Press, R 3:Винер не был согласен с Лоренцем как минимум в признании наличия «самостоятельных колебаний незначительных деталей на погодной карте». Он отмечал: «Торнадо – в высшей степени локальный феномен, и его точный путь могут определять мелочи, не влияющие глобально больше ни на что».
37
Тут имеется в виду следующее. Пусть есть линейное уравнение типа ?+x= = a (t)+ b (t)+ c(t). Это уравнение описывает динамику колебательного процесса, и здесь a (t), b (t)и c (t) – слагаемые, отвечающие за различные внешние воздействия. например, можно представить себе ребенка, качающегося на качелях в ветреную погоду. тогда a (t)будет обозначать усилия самого ребенка, b (t) – усилия его родителей, помогающих раскачиваться, и c (t) – силу ветра. можно разобрать исходное уравнение на кусочки, а именно – решить три отдельных уравнения, каждое из которых учитывает только один из трех эффектов (то есть х + х = a(t), x + x = b(t)nx+x = c(t)). Если теперь сложить решения этих уравнений, результат будет решением исходного уравнения. Эта аддитивность и является как раз следствием линейности – нелинейные уравнения таким свойством не обладают.
38
Neumann J. von. «Recent Theories of Turbulence» (1949) // Collected Works / Ed. by A. H. Taub. Oxford: Pergamon Press, R 6:437.
39
«The predictability of hydrodynamic flow» // Transactions of the New York Academy of Sciences. Vol. 11:25:R 409–432.
40
Ibid. R 410.
41
Этот набор из семи уравнений для описания конвекции был разработан Барри Сольцменом из Йельского университета, с которым Лоренц был знаком. Обычно уравнения Сольцмена описывают периодическое поведение, но, как заметил Лоренц, имелось одно исключение, при котором жидкость «отказывалась приходить в состояние покоя». Тогда Лоренц понял, что значение четырех из уравнений в ситуации хаоса сводится к нулю, поэтому их можно не учитывать. Saltzman В. «Finite Amplitude Convection as an Initial Value Problem» // Journal of the Atmospheric Sciences. Vol. P. 329.
42
Появление конвективных валов в жидкости из уравнений Навье – Стокса, непрерывности и теплопроводности подробно описано в монографии Ланда П. С. Нелинейные колебания и волны. М: Либроком, 2010.
43
Подобную модель можно найти в статье: Cook A. E., Roberts P. H. «The Rikitake twodisc dynamo system» // Mathematical Proceedings of the Cambridge Philosophical Society. Vol. P. 547–569.
44
Малкус; хаотичность магнитного поля Земли до сих пор остается горячо обсуждаемой темой, и некоторые ученые продолжают искать объяснения этому явлению, в том числе не исключая возможности внешнего воздействия, например потоков воздуха, идущих от огромных метеоритов. Одно из первых предположений, что изменения обусловлены хаосом, встроенным в саму систему, см.: Robbins К. A. «A moment equation description of magnetic reversals in the earth» // Proceedings of the National Academy of Science. Vol. P. 4297–4301.
45
Малкус.
46
Подобное вращение можно наблюдать на видео: www.youtube.com/watch?v=Gu50alrmzNA.
47
Эта классическая модель, обычно называемая системой Лоренца, выглядит так:
dx/dt = 10 (у?х)
dy/dt = ?xz + 28х ? у
dz/dt = ху ? (8/3) z
С момента ее появления в «Deterministic Nonperiodic Flow» система Лоренца много исследуется; см., например, авторитетную техническую работу: Sparrow C. The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors. Springer-Verlag, 27 См. русский перевод: Лоренц Э. «Детерминированное непериодическое течение» // Странные аттракторы. М.: Мир, С. 88. (Прим. науч. ред.)
48
Малкус, Лоренц.
49
«Deterministic Nonperiodic Flow» в середине 1960-х в научном сообществе цитировалась с периодичностью раз в год, а двумя десятилетиями позже – больше чем сто раз в год.
50
Предложенное Куном понимание научной революции широко критиковалось и обсуждалось спустя четверть века после того, как он его высказал, примерно в то время, когда Лоренц пытался построить с помощью компьютера первые погодные модели. В рассказе о взглядах Куна я полагался в первую очередь на его работу: The Structure of Scientific Revolutions, 2nd ed. enl. Chicago: University of Chicago Press, 1970; а также: The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago: University of Chicago, 1977; «What Are Scientific Revolutions?» //Occasional Paper. No. Center for Cognitive Science, Massachusetts Institute of Technology; и интервью с Куном. Еще один полезный и важный источник, который содержит размышления о предмете: Cohen I. В. Revolution in Science. Cambridge, Mass.: Belknap Press, 1985.
Все книги на сайте предоставены для ознакомления и защищены авторским правом