Александр Матанцев "Защита астронавтов от радиации при полетах на Луну и Марс"

Проводится анализ защиты при полетах на Луну и Марс, с учетом работ ИКИ, ВНИИЭМ, даются свои расчеты по дозам в слоях Ван Аллена, за участком магнитосферы Земли, у поверхности планет. Даны расчеты защиты с учетом солнечных вспышек классов Х, М и С, новые решения по защите. Безопасный полет на Луну возможен при толщине корпуса 10 г/см2, а на Марс при толщине 50 г/см2 или 25 г/см2 для слоистых материалов. Выход в скафандре возможен за время не более получаса, и дальше в защитной кабине марсохода.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785005996398

child_care Возрастное ограничение : 12

update Дата обновления : 28.04.2023


Первый слой, где происходит замедление быстрых нейтронов, состоит из элементов с малой атомной массой: воды, парафина, полиэтилена, бетона, гидридов металлов. Второй слой предназначен для поглощения медленных нейтронов. Он включает в себя такие элементы, как бор, кадмий, гафний, европий. Процесс поглощения сопровождается гамма-излучением. И для его ослабления предусматривается третий слой, состоящий из тяжелых металлов или эквивалентных им материалов. Ученые предложили использовать изотоп бор-10 в качестве составной части защитных материалов на основе высокомолекулярного полиэтилена. Изотоп бор-10 позволяет обеспечить высокоэффективную нейтронную защиту, в сотни раз превосходящую бетон.

В России ведутся и другие перспективные разработки. Так, создается радиационно-защитное покрытие, которое представляет собой многослойную структуру, состоящую из чередующихся слоев с разным эффективным атомным номером. Такая структура не только останавливает налетающие частицы, но и эффективно поглощает образовавшееся в результате их рассеивания тормозное излучение. В составе разработанного в РКС покрытия использовали неорганическую матрицу – связующие слои неорганических веществ, устойчивые к воздействию атомарного кислорода. Применение защитного покрытия расширит номенклатуру компонентной базы для малых космических аппаратов. Обработка составом позволит для повышения радиационной стойкости использовать даже обычные промышленные микросхемы, стоимость которых иногда в разы меньше специальной «космической» электроники. Сейчас радиационно-защитное покрытие проходит испытания. В ходе тестирования, которое специалисты РКС проводили вместе с коллегами из Национального исследовательского ядерного университета «МИФИ» (НИЯУ МИФИ), покрытие, задействованное в качестве дополнительной защиты алюминиевого корпуса, повысило показатель ослабления потока частиц в 4—7 раз. После завершения испытаний радиационно-защитное покрытие планируется использовать в бортовой аппаратуре космического назначения, производящейся в РКС.

Радиационные зоны Ван Аллена

Земля имеет атмосферу – многослойную эфирную оболочку со сложной структурой. Ближе всего к поверхности Земли расположена тропосфера, за нею – тропопауза и стратосфера. Начиная с 30 км до 600 км находится ионосфера со своими слоями, часть из которых активируется ночью, а часть – днем. А после 600 км идет магнитосфера (или экзосфера).

Одной из примечательных особенностей магнитосферы Земли является наличие в ней двух радиационных поясов Ван Аллена (большого и малого), которые простираются от 644 до 64400 км над ее поверхностью. Эти пояса представляют собой щиты из плотного структурного эфира, защищающие Землю от влияния жесткой радиации и солнечного ветра. Пояса захватывают частицы с высокой энергией, приходящие с солнечным ветром, в дальнейшем частицы циркулируют внутри поясов и вдоль силовых линий магнитного поля Земли.

Фактически пояса Ван Аллена были открыты советским учёным Н. Д. Булатовым ещё в 1930-е годы, а их существование было подтверждено учёными ИЗМИРАН по результатам полёта Первого спутника. Однако он не завил об этом всему миру и поэтому официально внутренний радиационный пояс Земли был открыт американским учёным Джеймсом Ван Алленом после полета Эксплорер-1, который заявил об этом сразу в нескольких мировых журналах. Поэтому Ван Аллен, в сущности, присвоил себе то, что было открыто задолго и независимо от него. Но, в настоящее время общепринятым считается название по его имени, поэтому не будем пока от этого отступать [22].

Внешний радиационный пояс Земли был открыт советскими учёными С. Н. Верновым и А. Е. Чудаковым после полёта Спутник-3 в 1958 году. Радиационный пояс в первом приближении представляет собой тор, в котором выделяются две основные области – рис. 1, рис. 2 [27]:

– внутренний радиационный пояс на высоте ? 4000 км, состоящий преимущественно из протонов с энергией в десятки МэВ;

– внешний радиационный пояс на высоте ? 17 000 км, состоящий преимущественно из электронов с энергией в десятки кэВ.

Кроме того, имеется дополнительная средняя зона. Земля находится внутри магнитосферы, граница которой находится на расстоянии около 70000 км от поверхности Земли.

Граница магнитосферы, внешний и внутренний пояса Ван Аллена, а также ионосфера надёжно защищают Землю от космической радиации. Поэтому в околоземном космическом пространстве очень мягкие радиационные условия.

Рис. 1

Рис. 1. Автор, Александр Матанцев, обозначил красными стрелками расстояние от Земли до внешнего и внутреннего слоев Ван Аллена

Рис. 2

Рис. 2. Внутренний и внешний радиационные пояса Ван Аллена вокруг Земли [50]

Рис. 3

Рис. 3. Зоны Ван Аллена вокруг Земли [14]

Рис. 4

Рис. 4. Радиационные пояса вокруг Земли [13]

Радиационные пояса:

1 – внешний радиационный пояс Земли (Ван Аллена);

2 – внутренний радиационный пояс (Ван Аллена);

3 – магнитные силовые линии;

4 – третий радиационный пояс обнаружен со спутника и образован межгалактическим космическим лучом (МГКЛ).

Рис. 5

Рис. 5. Радиационные пояса вокруг Земли [67]

Рис. 6

Рис. 6. Русский ученый С. Н. Вернов (1910—1982), открывший внешний радиационный пояс [69]

Рис. 7

Рис. 7. Отечественный ученый А. Е. Чудаков (1921—2001), открывший внешний радиационный пояс [69]

Магнитное поле – это самая эффективная зона защиты человека от ионизирующих излучений от Солнца и галактики. Именно благодаря магнитному полю, существующему вокруг Земли, человек не облучается под воздействием солнечного излучения и других ионизирующих излучений из космоса. Однако это поле не распространяется до Луны, а вокруг Луны вообще нет магнитного поля. Поэтому следует изучить дальность распространения магнитного поля от Земли. На рис. 4 показаны четыре зоны формирования магнитного поля.

Магнитосфера Земли – это самая внешняя из магнитных защитных оболочек Земли. Она представляет собой деформированное солнечным ветром геомагнитное поле и является препятствием для плазмы солнечного ветра, увлекающей за собой солнечное магнитное поле. Хвост магнитосферы образован силовыми линиями магнитного поля Земли, вытянутыми на много земных радиусов в ночную сторону. Эффективная зона хвоста магнитосферы тянется до 15 земных радиусов.

Магнитосфера имеет сложную непостоянную по конфигурации форму и магнитный шлейф. Внешняя граница магнитосферы устанавливается на расстоянии около 100 – 200 тыс. км от Земли, где магнитное поле ослабевает и становится соизмеримым с космическим магнитным полем.

Рис. 8. Схема строения радиационных поясов, предложенная Дж. Ван Алленом [66]: верхний рисунок: к началу 1959 г.; единый пояс содержит максимум интенсивности на расстоянии двух радиусов Земли от ее центра плоскости экватора;

Рис. 8

Нижний рисунок: к середине 1959 г. (после анализа результатов с КА «Пионер-1, -2, -3, -4» и с III советского ИСЗ); в двух радиационных поясах максимумы находятся на удалении радиуса 1,5 земных (внутренний протонный) и 3,5 (внешний электронный).

Радиационный пояс Ван Аллена представляет собой зону энергии заряженные частицы, большинство из которых происходит из солнечного ветра, которые захватываются и удерживаются вокруг планеты магнитным полем этой планеты. Земля имеет два таких пояса, и иногда могут быть временно созданы другие. Два основных пояса Земли простираются от высоты примерно от 640 до 58000 км (от 400 до 36040 миль) над поверхностью, в этой области уровни излучения меняются. Считается, что большинство частиц, образующих пояса, происходит от солнечного ветра и других частиц космических лучей. Улавливая солнечный ветер, магнитное поле отклоняет эти энергичные частицы и защищает атмосферу от разрушения [62].

Рис. 9

Рис. 9. Солнечные вспышки, солнечный ветер и радиационные пояса вокруг Земли [67]

Американец Ван-Аллен открыл только внутренний пояс, а открывателями внешнего радиационного пояса являются советские ученые Вернов и Чудаков.

Значительная разница в экспериментах Вернова и Ван Аллена состояла в обследованных областях пространства. Спутник-2, имел наклон орбиты к земному экватору около 65°, американские Explorer-1, -3 – около 33°. Информация с советского спутника передавалась каждый день с трех витков, проходящих над территорией СССР, и принималась станциями, расположенными на территории СССР, а информация с остальной, большей части витков, была нам недоступна. Как потом стало ясно, это несовершенство эксперимента лишило нас очень важной информации в районе апогея орбиты (1760 км), где потоки частиц были значительно больше, т.е. фактически приоритета обнаружения повышенной радиации на больших высотах над поверхностью Земли. С американских спутников информация поступала практически со всех континентов, они на первых же витках получили данные о потоках частиц на всех высотах полета.

Такая интерпретация авторами первых измерений энергичных заряженных частиц на спутниках говорит о том, что обе группы, советская и американская, были не готовы к восприятию обнаруженного нового явления. Однако, результаты, доложенные Ван Алленом 1 мая 1958 года всколыхнули научную общественность, начались бурные обсуждения в различных научных группах, в основном на Западе. В Советский Союз в те времена информация, даже чисто научная, просачивалась с трудом. Результаты же полета Спутника-2 стали известны научной общественности только в июне 1958 года (дата выхода в свет журнала), да и то, в основном, русскоязычным читателям. Такое катастрофическое различие в популяризации своих достижений было характерно для советского периода, оно объясняется рядом причин, среди которых секретность стояла не на последнем месте.

Важный этап понимания нового явления приходится на май 1958 года, когда был запущен Спутник-3 (15 мая 1958 г).

Таким образом, к концу лета 1958 года научное сообщество узнало о существовании вокруг Земли областей повышенной радиации, о том, что эта радиация разделена на две зоны, внутреннюю -экваториальную и внешнюю – приполярную. Внутренняя зона заполнена, в основном, протонами 100 МэВ, внешняя – электронами 100 кэВ. Было установлено, что эти частицы захвачены магнитным полем Земли, и найден возможный источник наполнения поясов частицами.

Часть 1. Размеры поясов Ван Аллена и параметры основных ионизирующих излучений в них

Пояса Ван Аллена – области в магнитосфере Земли, в которых накапливаются и хранятся заряженные частицы, которые создают зоны повышенной радиации. Области в форме бубликов или овалов, состоят из внутреннего пояса (область с максимально высокой радиацией всего пояса, находится на расстоянии 600 км, заканчивается на 6000 км) и внешнего (в нем интенсивность много ниже, но он более обширный; начинается на высоте 10 000 км, заканчивается 60 000 км). Внутренний пояс очень стабилен по сравнению со внешним – тот изменяет свою концентрацию и размер в зависимости от геомагнитных бурь, вызываемых волной солнечных частиц.

Рис. 10

Рис. 10. Зоны магнитных полей от Земли [15]

I – внутренний, протонный пояс Земли с максимальной плотностью высокоэнергетических протонов на высоте от 3 тыс. км до 4 тыс. км;

II – пояс протонов малой энергии;

III – внешний электронный радиационный пояс, около 22 тыс. км;

IV – зона квазизахвата частиц «солнечного ветра».

Магнитосфера Земли – это самая внешняя из магнитных защитных оболочек Земли. Она представляет собой деформированное солнечным ветром геомагнитное поле и является препятствием для плазмы солнечного ветра, увлекающей за собой солнечное магнитное поле. Хвост магнитосферы образован силовыми линиями магнитного поля Земли, вытянутыми на много земных радиусов в ночную сторону.

Все книги на сайте предоставены для ознакомления и защищены авторским правом