Джейд Картер "Нейросети начало"

grade 5,0 - Рейтинг книги по мнению 40+ читателей Рунета

Книга является отличным ресурсом для тех, кто хочет познакомиться с основами нейросетей и их применением в жизни. В книге подробно объясняется, что такое нейрон и как он работает в нейросети, что такое веса и смещения, как нейрон принимает решения и как строится нейросеть. Кроме того, книга охватывает такие темы, как обучение нейросетей, основные типы нейросетей (полносвязные, сверточные и рекуррентные), и их применение в задачах классификации, регрессии и кластеризации.Книга также рассматривает продвинутые темы в нейросетях, такие как глубокое обучение, автоэнкодеры и генеративные модели. Автор подробно объясняют, как использовать эти методы в нейросетях и как они могут помочь в решении сложных задач.Независимо от того, являетесь ли вы новичком в области нейросетей или же уже имеете опыт работы с ними, эта книга станет полезным ресурсом для расширения знаний и навыков. Она предоставляет понятную и доступную информацию о технологии, которая становится все более важной в нашей жизни.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 28.04.2023

keras.layers.MaxPooling2D((2, 2)),

keras.layers.Conv2D(64, (3, 3), activation='relu'),

keras.layers.MaxPooling2D((2, 2)),

keras.layers.Conv2D(64, (3, 3), activation='relu'),

keras.layers.Flatten(),

keras.layers.Dense(64, activation='relu'),

keras.layers.Dense(10, activation='softmax')

])

Затем мы можем скомпилировать модель, задав функцию потерь, оптимизатор и метрики для оценки качества модели.

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

После этого мы можем запустить процесс обучения, передав в модель данные для обучения и тестирования и указав количество эпох (итераций) и размер батча (количество примеров, обрабатываемых за одну итерацию).

model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_data=(test_images, test_labels))

Наконец, мы можем оценить качество модели на тестовых данных.

test_loss, test_acc = model.evaluate(test_images, test_labels)

print('Test accuracy)

Результатом обучения нейросети для распознавания цифр на изображениях будет модель, которая способна принимать на вход изображение с рукописной цифрой и предсказывать, какая цифра на изображении изображена.

Этот код позволяет обучить нейросеть для распознавания объектов на изображениях, а именно для классификации изображений из набора CIFAR-10. Обученная нейросеть может быть использована для распознавания объектов на других изображениях, которые не были использованы в обучающей выборке. Для этого достаточно подать изображение на вход нейросети и получить ответ в виде вероятности принадлежности к каждому из классов.

Для проверки точности модели можно использовать тестовый набор изображений с известными метками (т.е. правильными ответами) и сравнивать предсказания модели с этими метками. Чем выше точность модели на тестовых данных, тем более успешно она справляется с задачей распознавания цифр.

После обучения модели ее можно использовать для распознавания цифр на новых изображениях, например, в приложении для считывания рукописных цифр на почтовых индексах, на банковских чеках или в других сферах, где требуется автоматическое распознавание цифр.

2. Пример кода «Автоматическое распознавание речи».

Для реализации второго примера в среде TensorFlow нам понадобится набор данных CIFAR-10, который можно загрузить с помощью встроенной функции TensorFlow.

Набор CIFAR-10 содержит 60000 цветных изображений размером 32х32 пикселя, разделенных на 10 классов. Для обучения нейросети мы будем использовать 50000 изображений, а для тестирования – оставшиеся 10000.

Вот как выглядит реализация второго примера в TensorFlow:

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

# Определение архитектуры нейросети

model = keras.Sequential(

[

layers.LSTM(128, input_shape=(None, 13)),

layers.Dense(64, activation="relu"),

layers.Dense(32, activation="relu"),

layers.Dense(10, activation="softmax"),

]

)

# Компиляция модели

model.compile(

optimizer=keras.optimizers.Adam(learning_rate=0.001),

loss=keras.losses.CategoricalCrossentropy(),

metrics=["accuracy"],

)

# Загрузка звукового файла

audio_file = tf.io.read_file("audio.wav")

audio, _ = tf.audio.decode_wav(audio_file)

audio = tf.squeeze(audio, axis=-1)

audio = tf.cast(audio, tf.float32)

# Разбивка на фрагменты

frame_length = 640

frame_step = 320

audio_length = tf.shape(audio)[0]

num_frames = tf.cast(tf.math.ceil(audio_length / frame_step), tf.int32)

padding_length = num_frames * frame_step – audio_length

audio = tf.pad(audio, [[0, padding_length]])

audio = tf.reshape(audio, [num_frames, frame_length])

# Извлечение признаков MFCC

mfccs = tf.signal.mfccs_from_log_mel_spectrograms(

tf.math.log(tf.abs(tf.signal.stft(audio))),

audio.shape[-1],

num_mel_bins=13,

dct_coefficient_count=13,

)

# Подготовка данных для обучения

labels = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "zero"]

label_to_index = dict(zip(labels, range(len(labels))))

index_to_label = dict(zip(range(len(labels)), labels))

text = "one two three four five six seven eight nine zero"

target = tf.keras.preprocessing.text.one_hot(text, len(labels))

X_train = mfccs[None, …]

y_train = target[None, …]

# Обучение модели

history = model.fit(X_train, y_train, epochs=10)

# Предсказание результатов

predicted_probs = model.predict(X_train)

predicted_indexes = tf.argmax(predicted_probs, axis=-1)[0]

predicted_labels = [index_to_label[i] for i in predicted_indexes]

# Вывод результатов

print("Predicted labels:", predicted_labels)

Этот код реализует автоматическое распознавание речи с помощью нейросети на основе TensorFlow и Keras. Первым шагом определяется архитектура нейросети с помощью Keras Sequential API. В данном случае используется рекуррентный слой LSTM, принимающий на вход последовательность участков звука длиной 13. Затем идут несколько полносвязных слоев с функцией активации relu и один выходной слой с функцией активации softmax, выдающий вероятности для каждого класса речи.

Далее модель компилируется с помощью метода compile. Оптимизатором выбран Adam с коэффициентом обучения 0.001, функцией потерь – категориальная кросс-энтропия, а в качестве метрики используется точность классификации.

Затем загружается звуковой файл в формате wav, который декодируется с помощью tf.audio.decode_wav и преобразуется в числовые значения float32. Далее происходит разбиение файла на фрагменты длиной 640 с шагом 320. Если файл не делится на равные фрагменты, то добавляется заполнение.

Далее происходит извлечение признаков MFCC (Mel-frequency cepstral coefficients) из каждого фрагмента звука с помощью функции tf.signal.mfccs_from_log_mel_spectrograms. Полученные признаки используются для обучения модели.

Для обучения модели необходимо подготовить данные. В данном случае используется текст с указанием всех возможных классов и соответствующая метка для каждого класса. Для удобства преобразуется текст в one-hot кодировку с помощью метода tf.keras.preprocessing.text.one_hot. Затем подготовленные данные передаются в модель для обучения с помощью метода fit.

После обучения модели предсказываются результаты на тех же данных с помощью метода predict. Выбирается индекс с максимальной вероятностью и соответствующий ему класс.

В конце выводятся предсказанные метки классов.

3. Пример кода «Рекомендательная система».

Для удобства, опишем процесс в пяти шагах:

Шаг 1: Сбор данных

Первый шаг в создании рекомендательной системы – сбор данных. Для этого нужно собрать данные о пользователях, например, их предпочтения, покупки, историю просмотров и т. д. Эти данные можно получить из различных источников, таких как базы данных или логи пользователей.

Шаг 2: Подготовка данных

После того, как данные собраны, нужно их подготовить. Например, нужно провести предобработку данных, чтобы очистить их от шума и выбросов. Для этого можно использовать различные техники, например, стандартизацию и нормализацию данных.

Все книги на сайте предоставены для ознакомления и защищены авторским правом