ИВВ "Уникальная формула и алгоритм в квантовых вычислениях. Открытие новой парадигмы"

В данной книге исследуется мною разработанная формула, основа уникального и универсального алгоритма в квантовых вычислениях. Разбираются основы квантовых вычислений, подробно описывается формула и ее применение, и проводится иллюстрация примеров на реальных системах. Также рассматривается расчет параметров формулы и создание алгоритмов на ее основе. Книга представляет интерес для исследователей и разработчиков в области квантовых вычислений и его применений.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785006201774

child_care Возрастное ограничение : 12

update Дата обновления : 22.12.2023


Действие оператора Адамара на каждый кубит является важной частью формулы $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $. Оно создает начальное состояние системы кубитов, обеспечивает равномерную вероятность состояний и подготавливает систему к последующим операциям сложения по модулю 2 и повторному применению оператора Адамара. Это позволяет формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ эффективно обрабатывать и изменять состояние каждого кубита на основе входных данных $\boldsymbol {x} $ и набора параметров $\boldsymbol {\theta} $.

Действие оператора Адамара на каждый кубит является одним из ключевых шагов в квантовых алгоритмах. Оно позволяет использовать суперпозицию состояний кубитов и межкубитные взаимодействия для решения определенных задач, которые классические алгоритмы могут решать намного медленнее или вообще не могут решить. Благодаря этому действию оператора Адамара, формула $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ может быть эффективно применена в различных квантовых алгоритмах, позволяя достигать значительного ускорения и расширения возможностей вычислений.

Выполнение операции сложения по модулю 2

Операция сложения по модулю 2, $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$, выполняется над битовыми последовательностями $\boldsymbol {x} $ и $\boldsymbol {p} $. Здесь $\boldsymbol {x} $ – входная последовательность, а $\boldsymbol {p} $ – заданная последовательность параметров. Операция сложения по модулю 2 выполняется над каждым битом входной последовательности $\boldsymbol {x} $ и соответствующим битом вектора параметров $\boldsymbol {p} $.

При выполнении операции сложения по модулю 2, каждый бит входной последовательности $\boldsymbol {x} $ складывается (по модулю 2) с соответствующим битом вектора параметров $\boldsymbol {p} $. Для двух битов $x$ и $p$, результат сложения будет определяться следующей таблицей:

|x|p|Result|

|-|-| – — – |

|0|0| 0 |

|0|1| 1 |

|1|0| 1 |

|1|1| 0 |

Сложении по модулю 2, результат каждого бита равен 0, если сумма соответствующих битов входной последовательности и вектора параметров четна, и равен 1 в противном случае.

Операция сложения по модулю 2 в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ используется для изменения состояния каждого кубита в системе на основе входных данных $\boldsymbol {x} $ и заданного набора параметров $\boldsymbol {p} $. Это позволяет формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ эффективно обрабатывать информацию и выполнять специфические операции с битами входных данных.

Описание операции $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$

Операция $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ представляет собой операцию сложения по модулю 2 между битовой последовательностью входных данных $\boldsymbol {x} $ и заданным набором параметров $\boldsymbol {p} $. В этой операции каждый бит входных данных $\boldsymbol {x} $ складывается с соответствующим битом параметров $\boldsymbol {p} $, а затем полученная сумма берется по модулю 2.

Для выполнения операции сложения по модулю 2 между двумя битами $x$ и $p$, используется таблица истинности следующего вида:

|x|p|Result|

|-|-|–|

|0|0|  0   |

|0|1|  1   |

|1|0|  1   |

|1|1|  0   |

Результат операции сложения по модулю 2 будет равен 0, если сумма соответствующих битов входных данных и параметров является четной (т.е., имеет четное количество единиц), и будет равен 1 в противном случае.

Например, для двух битовых последовательностей $\boldsymbol {x} = [1, 0, 1, 1] $ и $\boldsymbol {p} = [0, 1, 0, 1] $, результат операции $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ будет равен $ [1, 1, 1, 0] $, так как $1+0=1$, $0+1=1$, $1+0=1$, $1+1=0$.

Операция $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ позволяет изменять состояние каждого бита входных данных $\boldsymbol {x} $ на основе соответствующего бита вектора параметров $\boldsymbol {p} $. Это позволяет формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ эффективно преобразовывать информацию и выполнять определенные операции с битами входных данных для достижения нужных результатов.

Повторное применение оператора Адамара ($H^ {n} $)

Повторное применение оператора Адамара $H^ {n} $ осуществляется после выполнения операции сложения по модулю 2 $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $. После применения операции сложения по модулю 2, результат используется в качестве нового набора данных $\boldsymbol {x} $ для повторного применения оператора Адамара.

Повторное применение оператора Адамара $H^ {n} $ к системе кубитов выполняется точно так же, как и первоначальное применение. Каждый кубит в системе подвергается операции Адамара, которая приводит его в суперпозицию состояний $|0\rangle$ и $|1\rangle$.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/chitat-onlayn/?art=70126669&lfrom=174836202) на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Похожие книги


Все книги на сайте предоставены для ознакомления и защищены авторским правом