Антон Олегович Малютин "120 детских вопросов о физике и окружающем мире"

None

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 999

update Дата обновления : 25.01.2024


Говоря о космических аппаратах и о космических телах вообще, мы привыкли использовать слово «полёт» – спутник летит вокруг Земли, а сама Земля летит вокруг Солнца. Однако законы небесной механики нам говорят, что космические тела скорее не летят, а падают! И вы сейчас поймёте, что это действительно так.

Начнём с самого простого: возьмите камень, влезьте на гору, и бросьте его горизонтально – камень полетит по дуге, и упадёт на землю. Вновь возьмите и бросьте камень, но теперь сильнее – камень полетит дальше, но всё равно упадёт. Так, раз за разом бросая камень со всё возрастающей силой, вы добьётесь того, что он никогда не упадёт, а примерно через полтора часа прилетит вам в спину (и он сделал бы так, не будь у нашей планеты атмосферы). Проще говоря, вы сделаете из камня искусственный спутник Земли – для этого вам пришлось разогнать камень до так называемой первой космической скорости, равной примерно 7,9 км/с.

При наблюдении за полётом камня можно заметить интересную особенность: камень всегда летит по дуге, и в первую секунду путь его под действием силы притяжения отклонится от горизонтали на 5 метров. Это происходит независимо от скорости полёта, и даже наш камень-спутник, проделывая 7,9 км в каждую секунду, отклоняется от воображаемой касательной на 5 метров. Но, в отличие от других камней, спутник не падает на Землю, а всегда оказывается на одной высоте над её поверхностью.

Мысленный эксперимент Ньютона – бросание тел с горы со всё возрастающей скоростью

Кстати говоря, этот мысленный эксперимент придумал ещё Исаак Ньютон, и именно ему принадлежит идея о возможности полёта тел вокруг Земли.

К чему все эти рассуждения? А к тому, что, как и другие камни, наш камень-спутник не просто летит вокруг Земли – он на неё падает! И пока его скорость не станет меньше 7,9 м/с, он не упадёт – те самые 5 метров падения по вертикали компенсируются высокой скоростью по горизонтали, и Земля постоянно как бы уходит из-под ног нашего спутника.

Так на Землю падают и не могут упасть все космические тела, в том числе и Луна. А сама Земля в своём орбитальном движении падает на Солнце, но из-за орбитальной скорости около 30 км/с остаётся почти на одинаковом расстоянии от светила. Этому закону подчиняются вообще все тела, движущиеся в поле тяготения – начиная от крошечных метеоритов, и завершая огромными галактиками, которые сталкиваются друг с другом.

Что такое баллистический маятник?

Как определить скорость пули, тягу реактивного двигателя или эффективность взрывчатки? Может показаться, что это очень сложная задача, однако в действительности всё довольно просто. Нам на помощь приходят элементарные законы физики и простейший прибор – баллистический маятник.

В самом простом случае баллистический маятник представляет собой мешок или ящик с песком, подвешенный на одном или нескольких подвесах. Как понятно из названия, маятник может раскачиваться на подвесах. Масса маятника должна быть строго известной, иначе эксперименты будут давать ошибку.

Итак, встанем на некотором расстоянии от маятника, и выстрелим в него – маятник в момент попадания пули отклонится и поднимется на некоторую высоту. Измерив эту высоту и проделав несложные вычисления, можно узнать скорость пули. Как это возможно? Благодаря закону сохранения количества движения.

Баллистический маятник. До удара он покоится, после столкновения с движущимся снарядом – отклоняется назад

Снаряд и маятник можно считать замкнутой системой, в которой не участвуют внешние силы (сопротивлением воздуха можно пренебречь), а в любой замкнутой системе действует закон сохранения количества движения. В начале эксперимента пуля была подвижной, а маятник – неподвижным, затем пуля передала маятнику некоторый импульс, в результате чего маятник приобретает скорость и отклоняется – при всём этом общее количество движения системы осталось неизменным.

Но как высота подъёма маятника связана со скоростью пули? Всё дело в той кинетической энергии, которую приобретает маятник от пули – в наивысшей точке подъёма маятника вся его кинетическая энергия переходит в потенциальную. Измерив высоту подъёма, мы рассчитаем потенциальную энергию маятника (по формуле E=mgh, где m – масса маятника вместе с пулей, h – высота полёта, а g – ускорение свободного падения), отсюда найдём кинетическую энергию (E=mv

/2, где v – скорость движения маятника), а значит – скорость движения маятника. Наконец, закон сохранения количества движения (исходя из соотношения mv=(M+m)v

, где m – масса пули, M – масса маятника, v – скорость пули, v

– скорость маятника после попадания пули) поможет из скорости маятника получить скорость пули.

Сегодня существует масса разновидностей баллистических маятников – они выполняются в виде небольших пушек с зарядами, в виде стендов с реактивными двигателями, и т.д. Но все они основаны на одних законах, поэтому позволяют легко измерять скорости, импульсы и многие другие физические величины различных предметов и приборов.

Как фигурист изменяет скорость своего вращения?

Наверняка, вы не раз видели, как фигуристы выполняют самые удивительные трюки – это красиво и очень интересно. Но обращали ли вы внимание на то, как фигуристы вращаются? Вот спортсмен закручивается с раскинутыми руками, затем притягивает руки к груди, и резко увеличивает скорость вращения – это они могут проделывать в полёте, в приседе, и даже в паре. Но как у фигуристов получается так раскручиваться, ведь они, кажется, даже не прилагают для этого особых усилий?

Фигуристы опираются на закон сохранения момента импульса (или закон сохранения углового момента), который сводится к следующему: каждое вращающееся тело имеет некоторое количество движения, или момент импульса, который без воздействия внешних сил со временем остаётся неизменным. Для вращающегося тела также присуща ещё одна величина – момент инерции, который зависит от массы и конфигурации тела. Например, большой маховик обладает высоким моментом инерции, так как вращающаяся масса находится на некотором расстоянии от центра вращения – такой маховик трудно раскрутить и не менее трудно остановить. А стержень такой же массы имеет гораздо меньший момент инерции, так как вся вращающаяся масса сосредоточена у оси вращения.

Наконец, мы подошли к самому главному: момент импульса вращающегося тела находится в простой зависимости от угловой скорости и от момента инерции: L = I? (где L – момент импульса, I – момент инерции, ? – угловая скорость). Теперь становится понятным, что если тело раскрутить и уменьшить его протяжённость, то оно вследствие уменьшения момента инерции станет вращаться быстрее, и наоборот.

В этом и заключается секрет фигуристов. Раскручиваясь, спортсмен приобретает некоторый момент импульса. Притянув руки к груди, фигурист уменьшает момент инерции, и вследствие закона сохранения момента импульса его скорость вращения возрастает. Для остановки вращения фигурист сначала разводит руки в стороны (увеличивает момент инерции), а затем гасит оставшуюся скорость трением коньков об лёд.

Закон сохранения момента импульса является одним из фундаментальных законов сохранения в природе, и играет важную роль во Вселенной. Например, при взрывах Сверхновых звёзд возникают нейтронные звезды или чёрные дыры, которые имеют огромную скорость вращения – до нескольких тысяч оборотов в секунду! Это вращение возникает вследствие описанных выше эффектов: Сверхновыми взрываются массивные (в 8 – 10 раз тяжелее Солнца) и большие (диаметром в миллионы километров) звезды, имеющие невысокую скорость вращения. В момент взрыва светило сбрасывает с себя внешнюю оболочку, а на его месте остаётся тяжёлая нейтронная звезда (или даже чёрная дыра) диаметром в лучшем случае километров 30. Такое катастрофическое уменьшение момента инерции и приводит к колоссальному увеличению скорости вращения. Конечно, это только один из примеров действия закона, но он очень показателен.

Так что в следующий раз помните, какие важные законы стоят за красотой элементов фигурного катания.

Почему тормозит автомобиль?

При необходимости остановить автомобиль водитель жмёт на педаль тормоза, и машина замедляет своё движение. А вы задавались когда-нибудь вопросом: почему вообще работают тормоза? Если разобраться в этом, то ответ может показаться несколько неожиданным.

Движущаяся машина имеет некоторую кинетическую энергию, и чем выше скорость, тем выше энергия. Для остановки следует уменьшить количество кинетической энергии – как это сделать? Самое простое – поставить перед движущимся телом препятствие, при ударе о которое вся кинетическая энергия перейдёт… А во что она перейдёт? По большей части – в тепло. Тело и препятствие в результате столкновения нагреются, а некоторая часть энергии перейдёт в деформации. Можно использовать и более щадящий способ: перед движущимся телом поместить поверхность с высоким коэффициентом трения или просто песок. В этом случае вся энергия за счёт сил трения тоже перейдёт в тепло и деформации.

Для транспорта эти способы не годятся, хотя последний из них представляет определённый интерес, но в изменённом виде – нужно поверхность с высоким коэффициентом трения возить с собой. Например, на колёса поставить подвижные и неподвижные детали, которые в нужный момент приводились бы в соприкосновение и испытывали трение. Именно так и устроены фрикционные тормоза – есть диски или барабаны, вращающиеся вместе с колёсами, и неподвижные тормозные колодки, которые в момент остановки плотно прижимаются к дискам.

Таким образом, автомобили, поезда и другие колёсные транспортные средства тормозят потому, что их кинетическая энергия с помощью силы трения переводится в тепло, которое просто-напросто рассеивается. Заметим, что автомобили обладают большой кинетической энергией, поэтому детали тормозов испытывают большой нагрев – нередко они раскаляются докрасна!

НЕОЧЕВИДНОЕ В ОЧЕВИДНОМ

Существуют вопросы, ответы на которые кажутся нам очевидными и само собой разумеющимися. Но стоит копнуть поглубже, как всё встаёт с ног на голову, и в очевидном обнаруживается неочевидное.

Сколько весит килограмм?

Что за странный вопрос? Ведь килограмм – он и есть килограмм! Но не спешите с выводами, ведь здесь мы путаем два хотя и связанных, но разных понятия – вес и массу.

Если говорить просто, то масса – это величина, определяющая количество материи в теле или меру его инертности. Масса является фундаментальной величиной, она присуща всем телам во Вселенной и почти всем частицам – массы лишены только фотоны, которые из-за этого всегда движутся со скоростью света.

Другое дело – вес. Это сила, с которой тело действует на опору или подвес. И самое интересное, что вес одного тела, оказавшегося в разных условиях, может изменяться от нуля до невообразимых величин (но не до бесконечности!). Мы всегда имеем дело с весом, возникающим в поле силы тяжести нашей родной планеты. Но и в обыденной жизни мы постоянно сталкиваемся с изменениями веса, хотя и с краткосрочными: при ускорении и торможении автомобиля, при начале движения лифта вверх и вниз, на каруселях и даже просто в прыжке.

Избавиться от массы невозможно, а лишиться веса – легко. Даже если вы просто подпрыгните, то на краткий миг не будете весить ровным счётом ничего! Ведь в этот момент вы не действуете на опору, а значит – нет силы, нет и веса. Ещё дольше этот эффект можно наблюдать при прыжке с парашютом. Но полная невесомость достигается в космических кораблях. И вы не раз видели кадры парящих космонавтов и необычное поведение предметов внутри космического корабля.

Однако в невесомости теряется только вес, но не масса. И именно в этих условиях масса полностью проявляет себя как мера инертности тел. Например, космонавту приходится прилагать немало усилий, чтобы сдвинуть с места тяжёлый предмет. Но как только этот предмет будет сдвинут – он по инерции продолжит движение, что и облегчает работы по переноске грузов из транспортного космического корабля на космическую станцию и наоборот.

Это «работает» и в обратную сторону: вес тела даже в обычных условиях может очень сильно увеличиваться. Например, в момент удара по мячу его вес и вес ноги на короткое мгновение может увеличиваться по меньшей мере в 20 – 30 раз. А снаряд в момент выстрела из орудия становится тяжелее в 30 000 – 40 000 раз.

Наконец, масса и вес измеряются в разных единицах. Масса – в привычных килограммах (кг), а вес – в ньютонах (Н). В условиях Земли вес в 1 ньютон имеет тело массой примерно 102 грамма. На Луне это значение в 6 раз меньше, на астероидах – в сотни и тысячи раз меньше, на Юпитере – в 2,5 раза больше, на Солнце – в 27,85 раз больше, а на нейтронной звезде – в 100 – 200 миллиардов раз больше.

И может показаться, что самый большой вес тела должны иметь у чёрных дыр – объектов, притяжение которых настолько велико, что даже свет не может вырваться из них. Но нет! У чёрной дыры нет поверхности, и ничто не может вырваться из неё, поэтому и о весе тел, оказавшихся рядом с ней, говорить в принципе невозможно.

Так что не везде во Вселенной килограмм весит одинаково!

Вечный вопрос: что тяжелее – тонна дерева или тонна железа?

Часто можно услышать вопрос: что тяжелее – тонна железа или тонна дерева? Иногда вместо дерева вес железа сравнивают с пухом, но суть от этого не меняется. Нередко люди отвечают, что тонна железа тяжелее, кто-то склонен считать, что железо и дерево весят одинаково, а кто-то делает выбор в пользу дерева. Однако здесь не всё так однозначно, и ответ зависит от того, с какой стороны посмотреть на эту задачку.

Для начала рассмотрим, что представляет собой тонна дерева и тонна железа. Плотность железа составляет почти 7,9 г/см

, плотность древесины зависит от породы, для примера возьмём нашу русскую берёзку с плотностью около 0,65 г/см

. Поэтому тонна дерева занимает примерно в 12 раз больший объем, чем тонна железа. Это имеет важные последствия.

Во-первых, куб железа весом в тонну оказывает большее давление на опору, чем куб дерева такой же массы. Поэтому железный куб будет сильнее проминать грунт или может сломать опору, а всё это выглядит так, будто железо тяжелее дерева.

Во-вторых, наши кубы погружены в воздушный океан, поэтому на них, как и на любые другие тела, действует выталкивающая сила Архимеда. За счёт этого тела теряют часть своего веса, и чем больше объём тела, тем больше выталкивающая сила. Значит, большой куб из дерева будет больше терять в своём весе (а именно – чуть больше 1,7 кг против 0,17 кг у железа), поэтому тонна железа будет весить больше.

Однако куда более интересно третье следствие. Предположим, что мы можем взвесить тонну железа и тонну дерева на Земле, и переместиться с этим добром на Луну или на гипотетическую планету без атмосферы и с силой притяжения 1g. Что мы увидим, если теперь произведём взвешивание при отсутствии силы Архимеда? А то, что тонна дерева окажется тяжелее! Причина проста: при взвешивании тонны железа и тонны дерева на Земле, мы вынуждены компенсировать выталкивающую силу Архимеда, добавляя уже указанную выше массу – 1,7 кг для дерева и 170 г для железа. Естественно, при взвешивании в безвоздушном пространстве на тела не действует выталкивающая сила, и тонна железа будет весить 1001,7 кг, а тонна железа – 1000,17 кг. Выходит, истинная тонна дерева, взвешенного в воздухе, выше истинного веса железа, взвешенного в воздухе!

Вот и выходит, что у простой задачи есть несколько решений, и каждый ответ – правильный.

Почему лёд скользкий, а стекло – нет?

Встав на лёд в обычной обуви или на коньках, вы сразу покатитесь, но встав на гладкое стекло этого не случится. Почему же лёд скользкий, а стекло – нет?

Причина скольжения на льду очень проста: между поверхностью льда и скользящим по нему телом образуется тонкий слой воды, который выступает в роли смазки – она снижает коэффициент трения и делает лёд скользким. То же можно наблюдать и на мокром полу – поскользнуться на нём проще простого, даже если в сухом состоянии он не скользит!

Однако здесь же возникает вопрос – а откуда на льду появляется вода? Ведь лёд может существовать только на морозе, воде при такой температуре взяться неоткуда. Интересно, что этим вопросом учёные задаются почти два века, и явного ответа на него нет. Но есть кое-какие предположения.

Одна из причин появления воды на поверхности льда – давление. Оказывается, при повышении давления температура плавления льда снижается, а значит, при достаточном давлении со стороны коньков лёд начнёт плавиться даже на сильном морозе.

Но вот незадача: проведённые расчёты показывают, что давления от коньков не хватает для таяния льда! На выручку приходят некоторые особенности поверхности льда. Лёд не идеально гладкий – он покрыт большими и микроскопическими неровностями, поэтому фактическая площадь опоры конька в сотни раз меньше, чем геометрическая площадь пятна контакта. Значит, и давление в месте контакта каждой микронеровности льда с микронеровностью конька в сотни, тысячи и даже десятки тысяч раз выше расчётного. Этого более чем достаточно для плавления и образования водяной плёнки!

Теперь понятно, что на стекле или любой другой гладкой поверхности без смазки трение остаётся сухим, а на льду трение всегда «мокрое», и именно поэтому он скользкий.

Куда летит камень?

Возьмите кучу камней и ради удовольствия покидайте их. Желательно не в окно, а просто в чистом поле. Вскоре вы увидите, что камни летят примерно по одинаковому пути, а если вы произведёте вычисления, то установите: каждый камень, независимо от угла и силы первоначального броска, летит по одной траектории – параболе. И по параболической траектории движутся любые тела, брошенные в поле тяжести.

Но почему камень летит именно по параболе? Всё дело в так называемом принципе наименьшего действия (он также известен, как принцип Гамильтона или принцип стационарного действия).

Прежде, чем разобраться в существе этого принципа, нужно выяснить, что такое действие. В физике под действием понимают физическую величину, которая выступает мерой движения тела или физической системы. Если рассматривать окружающий нас макроскопический мир, за действие можно принять разность кинетической и потенциальной энергии тела за всё время его движения.

Поэтому под принципом наименьшего действия мы понимаем следующее: любое тело движется по такому пути, на котором разность кинетической и потенциальной энергии будет минимальной. И так уж вышло, что эта разность минимальна только при движении тела по параболической траектории.

Однако самое интересное здесь не сам принцип наименьшего действия, а тот факт, что тела «знают» о нем. В сущности, ничто не ограничивает свободу полёта брошенного камня, он может лететь сколь угодно сложными зигзагами, непредсказуемо меняя свою скорость и направление движения. Однако в реальности мы наблюдаем, что камень всегда «выбирает» параболическую траекторию с наименьшим действием. Этот вопрос имеет философский характер и на него нет однозначного ответа.

Принцип наименьшего действия универсален как для макромира, так и для микромира, в котором правит квантовая механика. Причём в квантовой механике (а точнее, в её копенгагенской интерпретации) считается, что любая движущаяся микрочастица «знает» о существовании всех возможных траекторий своего движения, и движется сразу по ним всем (а их может быть бесконечное количество!). Но при наблюдении с наибольшей вероятностью мы обнаружим эту частицу именно на той траектории, на которой соблюдается принцип наименьшего действия.

Как видите, простой полёт камня и микрочастицы – это на не так уж и просто. Несмотря на то, что нам известен принцип наименьшего действия, и мы можем производить сложные расчёты траекторий движения физических тел, мы не можем дать однозначного ответа, как эти тела «выбирают» именно эти траектории.

Существует ли центробежная сила?

Что за странный вопрос, скажете вы, конечно же центробежная сила существует! Иначе как можно объяснить поведение тел при вращении? Что прижимает вас к дверце автомобиля при резком повороте? А какая сила прижимает к стенкам жидкости в центробежных насосах? Все эти и многие другие примеры не оставляют нам никаких шансов усомниться в существовании центробежной силы.

Однако, несмотря на все свои проявления, центробежная сила считается фиктивной, или псевдосилой. А причина заключается в том, что действия этой силы видят не все наблюдатели. Понять это можно на простом примере.

Вы, двигаясь в машине, делаете резкий вираж – вас прижимает к дверце или с силой толкает в другую сторону. Вы, как наблюдатель, явно чувствуете центробежную силу и даже по известным формулам можете рассчитать её. Но пусть будет сторонний наблюдатель, неподвижно сидящий где-то рядом. Он видит несколько иную картину: при повороте автомобиля ваше тело по инерции продолжает двигаться прямо, что и приводит его к столкновению с дверцей.

Похожие книги


Все книги на сайте предоставены для ознакомления и защищены авторским правом