Джеймс Девис "40 задач на Python"

Книга призвана помочь читателю развить свои математические навыки, улучшить логическое мышление, освоить использование языка программирования Python для решения задач. Она подходит как для самостоятельного изучения, так и в качестве учебного пособия для студентов и учителей, желающих более глубоко погрузиться в мир языка Python и его приложений с использованием современных инструментов.В книге представлены задачи из разных областей: геометрические, комбинаторные, задачи на вероятности и статистику, логические, арифметические, задачи на движение и скорость и задачи на рекурсию и последовательности.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 25.05.2024


Пример 1:

Входные данные: 0 0 5 3 0 0 3

Выходные данные: YES

Пример 2:

Входные данные: 0 0 2 6 0 0 3

Выходные данные: NO

Решение: Для того чтобы определить, пересекаются ли два круга, можно воспользоваться следующими правилами:

1. Вычислим расстояние ( d ) между центрами кругов.

2. Если ( d ) меньше суммы радиусов ( r_1 ) и ( r_2 ) и больше разности радиусов ( |r_1 – r_2| ), то круги пересекаются.

3. Если ( d ) равно сумме радиусов, то круги касаются друг друга внешне.

4. Если ( d ) равно разности радиусов, то круги касаются друг друга внутренне.

5. Во всех других случаях круги не пересекаются.

Формула для вычисления расстояния между центрами кругов:

[ d = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2} \]

Псевдокод:

ввод x1, y1, r1, x2, y2, r2

вычислить d = sqrt((x2 – x1)^2 + (y2 – y1)^2)

если d <= r1 + r2 и d >= |r1 – r2| тогда

вывод "YES"

иначе

вывод "NO"

```

Псевдокод – это упрощенный язык описания алгоритмов, который используется для представления логики решения задачи без привязки к конкретному языку программирования. Он обычно используется для описания шагов алгоритма на естественном языке, что облегчает понимание и написание кода.

В псевдокоде часто используются ключевые слова, похожие на те, что применяются в реальных языках программирования, такие как "если", "то", "цикл", "вывод" и т. д. Однако синтаксис псевдокода более гибкий и менее строгий, чем у конкретного языка программирования.

Псевдокод позволяет описать алгоритм более наглядно и понятно, не углубляясь в детали реализации на определенном языке. Он используется в образовании, при разработке алгоритмов и при описании решения задач до того, как приступить к программированию на конкретном языке.

Реализация на Python:

```python

import math

# Чтение входных данных

x1, y1, r1 = map(float, input().split())

x2, y2, r2 = map(float, input().split())

# Вычисление расстояния между центрами кругов

d = math.sqrt((x2 – x1) ** 2 + (y2 – y1) ** 2)

# Проверка пересечения кругов

if d <= r1 + r2 and d >= abs(r1 – r2):

print("YES")

else:

print("NO")

```

Эта задача помогает понять, как использовать простую геометрию и математические формулы для определения пересечения геометрических фигур. Решение данной задачи иллюстрирует применение расстояний и неравенств для определения условий пересечения кругов.

3. Задача о пяти домиках

Условие задачи: На улице расположены пять домов, пронумерованных от 1 до 5. Каждый дом занят каким-то жителем. Дома расположены вдоль прямой, и между некоторыми соседними домами есть заборы. Необходимо определить минимальное количество переездов, чтобы жители домов удовлетворили следующим условиям:

1. Житель дома 1 не должен жить с жителем дома 2.

2. Житель дома 2 не должен жить с жителем дома 3.

3. Житель дома 3 не должен жить с жителем дома 4.

4. Житель дома 4 не должен жить с жителем дома 5.

Каждый переезд стоит одну единицу. В начальный момент времени все жители уже живут в соответствии с условиями задачи.

Входные данные:

– Пять чисел от 1 до 5, представляющих номера домов, в которых в настоящее время живут жители.

Выходные данные:

– Одно целое число – минимальное количество переездов, которое необходимо совершить.

Примеры:

Пример 1:

Входные данные: 1 2 3 4 5

Выходные данные: 0

Пример 2:

Входные данные: 1 3 2 4 5

Выходные данные: 1

Решение:

Для решения этой задачи мы можем проанализировать текущее расположение жителей и определить, сколько переездов необходимо, чтобы выполнить все условия. Мы можем выявить промежутки, где два соседних дома заселены, и для каждого такого промежутка определить минимальное количество переездов, которое необходимо совершить.

Псевдокод:

ввод номера_домов

подсчет_переездов = 0

если номера_домов[0] == 1 и номера_домов[1] == 2, тогда подсчет_переездов += 1

если номера_домов[1] == 2 и номера_домов[2] == 3, тогда подсчет_переездов += 1

если номера_домов[2] == 3 и номера_домов[3] == 4, тогда подсчет_переездов += 1

если номера_домов[3] == 4 и номера_домов[4] == 5, тогда подсчет_переездов += 1

вывод подсчет_переездов

Реализация на Python:

```python

# Чтение входных данных

house_numbers = list(map(int, input().split()))

# Подсчет минимального количества переездов

moves_count = 0

for i in range(4):

if house_numbers[i] == i + 1 and house_numbers[i + 1] == i + 2:

moves_count += 1

# Вывод результата

print(moves_count)

```

Эта задача демонстрирует, как использовать простую логику для определения минимального количества операций, необходимых для достижения определенной цели. Решение основано на анализе текущего расположения жителей и выявлении промежутков, где требуются переезды для выполнения условий задачи.

4. Логическая цепочка чисел

Условие задачи: Дана последовательность чисел. Необходимо определить, является ли эта последовательность логической цепочкой. Логическая цепочка – это последовательность чисел, где каждое последующее число в последовательности является результатом выполнения определенной логической операции над предыдущим числом.

Входные данные:

– Последовательность целых чисел, разделенных пробелами.

Выходные данные:

– Если последовательность является логической цепочкой, вывести "YES". Иначе вывести "NO".

Примеры:

Пример 1:

Входные данные: 1 3 6 10 15

Выходные данные: YES

Пример 2:

Входные данные: 2 4 7 12 18

Выходные данные: NO

Решение:

Для определения, является ли последовательность логической цепочкой, мы можем проверить, выполняется ли для каждой пары чисел в последовательности логическое условие, которое связывает предыдущее и следующее число. Например, в логической цепочке каждое следующее число может быть равно предыдущему числу плюс индекс текущего числа в последовательности.

Псевдокод:

Все книги на сайте предоставены для ознакомления и защищены авторским правом