978-5-91419-525-7
ISBN :Возрастное ограничение : 0
Дата обновления : 08.06.2024
Рис. 5. Средний показатель годовой частоты сильного ветра (сила ветра более 7 баллов) в Гамбурге за 10 лет. Резкое снижение частоты в районе 1950 года вызвано сменой места проведения наблюдений, т. е. данные не репрезентативны для Гамбурга.
Второй, похожий пример связан с наблюдениями торнадо в Соединенных Штатах Америки (см. рис. 6). До 1870 года сообщения о торнадо появлялись лишь время от времени и обычно носили характер занимательных историй. Лишь впоследствии служба связи американской армии начала систематический сбор сообщений о торнадо. Правда, в тот момент эти меры пришлись не ко времени с политической точки зрения, так как эти страшные природные явления могли отпугнуть переселенцев. По этой причине в конце 1880-х гг. наблюдалась тенденция занижать уровень опасности торнадо, но через несколько лет такой подход снова был откорректирован.
Третий пример – это так называемый «эффект города». Уже давно известно, что температура в городах выше, чем за пределами городской застройки. В городах воздух охлаждается медленнее, чем в сельской местности, так как в городе меньше участков с открытой почвой и, соответственно, меньше испарений[1 - См., например: Cotton W. R., Pielke R. A. Human Impacts on Weather and Climate. ASTeR Press. 1992. P. 288 и далее.]. В Центральной Европе эта разница может превышать 1 градус. Проследим данный эффект на рисунке 7, на котором отображены температурные ряды для двух соседних населенных пунктов в канадской провинции Квебек. Метеорологическая станция «Шербрук» фиксирует климатические условия постоянно растущего города Шербрука, тогда как станция «Шоиниган» отображает климат сельского региона вокруг местечка Шоиниган. В 1966 году станция «Шербрук» переместилась из центра города в расположенный за его пределами аэропорт. Очевидно, именно после этого произошло резкое изменение в измерениях, схожее с тем, которое мы наблюдали в связи с ветровым климатом Гамбурга: станция Шербрук перестала быть репрезентативной для территории города Шербрука и тем более для его пригородов. В городе, за исключением резкого понижения температуры в 1966 году, мы видим постоянное потепление, в отличие от сельской метеостанции. Таким образом, метеостанция «Шербрук» тоже не пригодна для климатологических исследований, поскольку отражает климатические условия исключительно того места, где проводятся измерения. Их результаты не могут быть использованы ни для планирования сельскохозяйственных работ, ни для обоснованной оценки того, в какой мере актуальные колебания климата свидетельствуют о систематических изменениях климатических условий. Одним из следствий систематического потепления в черте города является то, что наблюдения за температурой на городских станциях не могут использоваться для определения средних значений для региона и тем более для всего земного шара. Поскольку ранние метеонаблюдения (самые первые из которых относятся к XVII веку, в частности, наблюдения в Болонье) проводились в основном в городах, климатология, реконструируя климатические колебания в прошлом, вынуждена отказываться от важного материала, что весьма досадно, так как оценить нынешнее потепление можно лишь сравнив его с прежними тенденциями потепления, обусловленными естественными процессами. Для этого необходимы данные, фиксирующие температурные ряды для максимально продолжительного периода в прошлом, когда еще не было повышенной концентрации парникового газа.
Рис 6. Частота зафиксированных в США торнадо.
Источник: Harold Brooks
Наконец, последний пример отсылает нас к широко известному анализу ущерба от ураганов. Он содержится, в частности, в третьем докладе Межправительственной группы экспертов по изменению климата (МГЭИК). Активисты, призывающие к принятию государственных мер по ограничению выброса парниковых газов, охотно используют его в качестве аргумента[1 - Разбирая этот случай, мы не собираемся спорить о том, может ли повышенная концентрация парниковых газов в атмосфере, связанная главным образом с деятельностью человека, изменить климат. Мы также не оспариваем тот факт, что эти изменения могут нанести серьезный вред экологии и что необходимо сокращение выбросов парниковых газов. Мы лишь хотим показать, что использование этих конкретных аргументов в данном случае ошибочно.].
На рисунке 8 показан ущерб, причиненный ураганами, имевшими место на протяжении всего побережья на территории США с 1900 года. Размер ущерба выражен в долларах, за базисный период взят 2005 год. На графике можно совершенно четко проследить увеличение размера ущерба, причем пик приходится на 2005 год, когда на Нью-Орлеан обрушился ураган Катрина. Этот пример мы приводим для того, чтобы соотнести рост общей суммы ущерба с повышением температуры поверхностных вод в Мексиканском заливе, которое, к тому же, является одной из причин глобального потепления.
Рис. 7. Среднегодовые значения дневного минимума околоземных температур для двух соседних метеостанций в Шербруке и Шоунигане в канадской провинции Квебек. Шербрукская метеостанция до 1966 года находилась в центре города, а затем была перенесена за городскую черту, на территорию аэропорта. Станция в Шоунигане на протяжении всего рассматриваемого периода находилась в одном и том же месте в сельской местности.
Источник: Storch, Zwiers, 1998.
Цифры на рисунке 8 – это абсолютно точные цифры, полученные от страховых компаний. В этом случае интерпретация имеющихся данных затруднена по двум причинам. Первая, менее важная, связана с тем, что ураганная активность колеблется от десятилетия к десятилетию. Другая, более важная причина заключается в том, что использование прибрежных регионов, на которые обрушиваются ураганы, кардинально изменилось. В прибрежных регионах проживает гораздо больше людей. Это, в свою очередь, означает, что риску разрушения подвергается гораздо большее количество ценных объектов и владений. Если учесть этот факт при анализе и допустить, что динамика ураганов в США оставалась неизменной с 1900 года, но при этом в отношении ценности разрушаемого имущества на протяжении всего столетия сохранялась ситуация 2005 года, то мы придем к совершенно иным результатам, как это можно видеть на рисунке 9.
На протяжении всего прошлого столетия наблюдались значительные колебания, и отдельные ураганы наносили огромный ущерб. Самый большой однократный ущерб был нанесен, по-видимому, ураганом в Майами в 1926 году (тогда это был еще маленький тихий городок). Ураган Катрина стоил американцам 81 млрд долларов, в то время как ураган 1926 года мог бы причинить Майами ущерб приблизительно в 130 млрд долларов, если бы Майами тогда был таким крупным городом, каким он является сейчас.
Рис. 8. Суммарный годовой ущерб от ураганов на побережье США в период с 1900 по 2005 год.
Источник: Pielke et al., op. cit.
Исходя из графиков 8 и 9, можно нарисовать две разные картины. Рисунок 8 сообщает нам о том, что ущерб от последнего урагана достиг беспрецедентного размера и что это изменение объясняется беспрецедентным уровнем ураганной активности. В этом случае в последующие годы и десятилетия можно было бы ожидать ее дальнейшего роста. Рисунок 9 говорит нам, с одной стороны, о том, что с 1992 года ураганы наносили значительный материальный ущерб, однако его масштабы сопоставимы с ущербом от предыдущих ураганов. С другой стороны, этот рисунок показывает нам, что данных за 50 лет недостаточно для того, чтобы оценить все возможные последствия.
Добиться временной репрезентативности сложно, так как на любой хронологической шкале наблюдаются колебания по всем основным климатическим переменным. Инструментарий с высоким временным разрешением показывает, что скорость ветра или температура меняются на шкале времени с секундным делением точно так же, как на шкалах с делением на недели, годы или десятилетия. Очевидно, необходимо определить такие числовые показатели, которые бы описывали, в каком интервале колебаний обычно варьируются изменения и с какой вероятностью встречаются крайние значения. Только на основании подобных измерений данном случае речь идет об изменениях, вызванных человеческой деятельностью[1 - К этому тезису мы еще вернемся в разделе 4.4.].
Рис. 9. То же, что и на рисунке 8, с тем лишь изменением, что в отношении численности населения, благосостояния и ценности владений жителей американского побережья взяты данные за 2005 год.
Источник: Pielke et al. [2005][1 - См. также: Pielke Jr., R. A. and C. W. Landsea, Gratz J., Collins D., Saunders M., Musulin R. Normalized Hurricane Damages in the United States: 1900–2005 // Natural Hazards Review 2008, Nr. 9. P. 29–42.].
В этой ситуации имеет смысл обратиться к статистической терминологии. Мы исходим из того, что климат действительно варьируется на всех временных шкалах[1 - Когда был изобретен гармонический анализ, разлагающий все ряды на периодические компоненты, предпринималось множество попыток зафиксировать и обособить периодические компоненты в погоде – подобно тому, как это делается в финансовых науках и других областях. Через несколько десятилетий выяснилось, что таким образом можно разбить даже абсолютно случайные ряды данных, но что добавление всего лишь одного дополнительного показателя нарушает все построение. И если в изучении действительно периодических явлений, например, приливов и отливов, эта концепция может быть очень полезной, в контексте климата эти допущения ведут к артефактам. Тем не менее, гармонический анализ широко распространен, особенно среди невежд.], но после аппроксимации эти колебания могут рассматриваться как случайные, если не принимать во внимание упомянутые выше регулярные годовые или дневные циклы. Если говорить точнее, мы рассматриваем отклонения от средних значений годового или суточного хода – так называемые математическую абстракцию, с помощью которой мы можем описать кажущуюся нерегулярность. В ходе погоды и климатическом режиме не бывает случайностей в строгом смысле этого слова[2 - В принципе здесь не играет никакой роли, говорим ли мы о «подлинной» случайности в значении брошенного Господом богом жребия. Достаточно заметить, что множество нелинейных, зачастую хаотических процессов в климатической системе демонстрирует такие долговременные характеристики, что их сложно отличить от математической конструкции случайности. Следовательно, «случайность» – это удобный и эффективный инструмент, позволяющий вместить климатические колебания в одном понятии. См. также раздел 3.2.]. Однако их динамика складывается из многих «нелинейных» процессов, которые могут порождать крайне изменчивые структуры. Наложение этих многочисленных «хаотичных» и «нехаотичных» процессов друг на друга получается настолько сложным, что становится невозможным в полной мере учесть отдельные процессы, и общий ход уже сложно отличить от статистических колебаний.
Теперь мы совершим небольшой экскурс в статистику.
Под случайным процессом мы будем понимать процесс, порождающий числовые ряды, значения которых соответствуют случайному распределению. Наиболее известным является гауссово распределение. Оно сообщает нам, с какой вероятностью переменная принимает то или иное возможное значение. Такие распределения можно описать при помощи нескольких характерных величин – среднего и среднеквадратического отклонения.
Среднее значение есть арифметическое среднее всех наблюдений, т. е. в большинстве случаев половина всех полученных в ходе наблюдений результатов ниже среднего, а другая половина – выше[1 - Строго говоря, это верно только тогда, когда мы имеем дело с симметричным распределением.]. Годовой и суточный ход на рисунке 1 представляет собой как раз среднюю величину (рассчитанную для каждого календарного месяца / каждого часа в отдельности).
Среднеквадратическое отклонение или его квадрат (дисперсия) показывает меру разброса случайных величин. В двух третях всех случайных выборов мы попадаем в интервал «среднее значение ± среднеквадратическое отклонение», а в одной трети случайных выборов мы получаем значения больше или меньше, чем «среднее значение ± среднеквадратическое отклонение». Частота подобных существенных отклонений от среднего значения измеряется с помощью перцентилей. Перцентиль 90% больше, чем 90% всех наблюдений, перцентиль 10% меньше, чем 10% всех наблюдений. Если в нашем числовом ряду речь идет о максимальной скорости ветра в течение года, то перцентиль 99% описывает максимальную скорость ветра, которая была превышена в среднем один раз в сто лет.
Случайность не означает, что следующие друг за другом числовые показатели абсолютно не зависят друг от друга. Скорее, здесь – именно в климатологическом контексте – мы наблюдаем такую ситуацию, когда значение климатической переменной в какой-то момент времени частично определяется предшествующим моментом времени: «Завтра погода будет в сущности такой же, как сегодня». Отсюда следует, что значение переменной в послеследующий момент времени все еще будет частично детерминировано настоящим значением, однако чем дальше мы продвигаемся по шкале, тем меньше будет эта детерминированность. Так что значение, которое переменная примет через большой промежуток времени, не будет иметь ничего общего с нынешним значением. Отсутствие связи между ними можно понимать таким образом, что, случайным образом изменив последовательность ряда, мы никак не изменим характер этого ряда. Последовательную детерминацию можно понимать как память случайного процесса.
На практике мы не встретим ни распределений, ни памяти в этом смысле. Поэтому характерные величины приходится выводить из наблюдений. И тогда встает вопрос: сколько нужно провести наблюдений, чтобы полученные результаты имели смысл? Если мы будем наблюдать за температурой в течение двадцати лет и рассчитаем среднее значение для первых и последних десяти лет, то эти средние значения будут различаться. Чтобы результаты были репрезентативными, разница не должна быть слишком большой.
Рис. 10. Распределение тайфунов в Восточной Азии в 1994 (сравнительно большое количество тайфунов – 36) и в 1998 году (очень небольшое количество тайфунов – 16).
Цвета отображают различную силу тайфунов.
Источник: http://agora.ex.nii.ac.jp/digital-typhoon.
Так как в отношении климатических условий нет точных или «очевидных» временных границ для определения статистических показателей, приходится полагаться на некие конвенции или стандарты, задающие эти границы. В метеорологии существует стандартный интервал в 30 лет. На Международной метеорологической конференции, проходившей в 1957 году в Вашингтоне, был подтвержден этот временной норматив, принятый еще в 1935 году на аналогичной научной конференции в Варшаве. За «климатический эталон» был взят период с 1931 по 1960 год (до этого – с 1901 по 1930 год). Таким образом, наблюдения, результаты которых впоследствии усредняются, подчиняются четкому стандарту, обязательному для всех метеорологических служб. Нормой считается среднее значение именно за 30, а не за 20 или 15 лет. Впрочем, в научных климатологических исследованиях этот стандарт уже не играет никакой роли, с тех пор как стало ясно, что климат существенно варьируется и на шкале, охватывающей 30 лет и более.
Теперь мы можем рассчитать характерные величины для различных климатических переменных и различных мест наблюдения, а затем, перенеся соответствующие значения на соответствующие территории, представить ученым и широкой общественности информацию о климате в форме карт.
На рисунке 10 мы видим две карты, на которых показана траектория и интенсивность восточноазиатских тайфунов в 1993 (максимальное число тайфунов) и 1998 году (минимальное число тайфунов). Над северной частью Тихого океана образуются циклоны. Большинство из них затем движутся на запад, к азиатскому побережью. Очевидно, что количество тайфунов сильно варьируется в зависимости от года.
Рис. 11. схема двухсекундных максимальных порывов ветра со средней частотой 1 раз в 50 лет (информация используется с любезного разрешения Германской метеорологической службы и лично господина Х. Шмидта)
Вторая карта посвящена сильным ветрам в Северной Германии. На ней отображена максимальная скорость ветра (фиксируемая в течение не менее двух секунд), превышение которой фиксировалось не чаще одного раза в 50 лет (рисунок 11). Согласно этой карте, непосредственно на береговой линии можно ожидать скорости ветра 50 м/с, тогда как максимальная скорость ветра в глубине материка равна 38 м/с и достигается раз в 50 лет.
Эта информация в качестве данных о внешних детерминирующих факторах включается в исследования, экспертные оценки и заключения о социальных, экономических и политических процессах, относительно которых известно наверняка или предполагается, что они могут быть подвержены влиянию климатических условий. Это целый спектр вопросов (мы приведем для примера лишь несколько), как правило, касающихся прикладных исследований антропоцентристского характера.
1) Возможные влияния климатических условий на жизнь отдельных людей, их самочувствие и здоровье. К этому аспекту мы еще вернемся.
2) Важное место в этом списке занимает предотвращение опасности, связанной с экстремальными метеорологическими явлениями. Типичный случай – опасность наводнений на морском побережье или на берегах рек. Статистические данные о количестве осадков и силе ветра – это главные показатели, позволяющие оценить или измерить уровень потенциальной опасности и на этом основании, например, рассчитать высоту дамбы. Оползание склона или сель тоже входят в группу климатически детерминированных опасностей, так как хотя они в целом и не поддаются прогнозированию (так же, как извержения вулкана), однако между их частотой и статистикой осадков прослеживается четкая связь.
3) Статистические данные о климате и особенно об экстремальных значениях его переменных крайне важны не только для человека и общества, но и для мира растений. Климатические ограничения возможностей сельского хозяйства зачастую определяются не столько средней температурой летом и зимой, сколько минимальным значением температуры или первыми и последними заморозками в данной местности. Если температура резко падает хотя бы однажды, то, как правило, потом уже для растений не так важно, будет ли это значение температуры повторяться через равные промежутки времени или, несмотря на данный экстремум, оставшийся период в сообщениях всех метеослужб будет фигурировать как «нормальный». (Во Флориде, например, решающими являются заморозки или их отсутствие, так как именно заморозки губят урожай цитрусовых). В других случаях температурные экстремумы в целом не имеют большого значения: так, например, время цветения подснежников зависит главным образом от средней температуры в январе и феврале.
4) Другой важной сферой применения статистической информации о климате является оценка актуальных процессов и явлений и возможность понять, объясняются ли они аномальными климатическими условиями или какими-то другими, не климатическими процессами. Сюда относится, например, вопрос о причинах цветения водорослей, которое могло быть вызвано эвтрофированием Северного моря, или о «гибели лесов».
Тщательный учет бесчисленного множества климатических наблюдений, которые на протяжении вот уже 100 лет ведутся на торговых судах и результаты которых в обобщенном и переработанном виде представлены в знаменитых базах данных, таких как COADS (Comrehensive Ocean-Atmosphere Data Set), также является источником важной рабочей информации для современных фундаментальных исследований климата. Здесь следует упомянуть исследования удаленного воздействия климатических аномалий, прежде всего в связи с феноменом Южного колебания – Эль-Ниньо (ENSO), описанным еще в конце XIX века шведским ученым Гильдебрандсоном. Другая масштабная климатическая аномалия – Североатлантическое колебание – представляет собой противоположные по фазе колебания атмосферного давления и температуры в северном Атлантическом океане. Если температура в Гренландии выше нормы, то в Северной Европе в это время температура, как правило, понижается, и наоборот. С этим связаны и колебания атмосферного давления: если на территории Исландии давление повышенное, то над Азорскими островами – пониженное, и наоборот. Этот механизм, безусловно, имеет большое значение для европейского климата. Впервые он был описан датским миссионером Гансом Эгеде (1668–1758) в книге «Dagbog holden i Gr?nland i Aarene» (1770–1778).
Количество и относительное значение климатических переменных менялись по мере развития научных исследований в этой области. Сегодня в центре внимания находятся уже другие переменные, и число их существенно возросло. Если раньше ученые в изучении климата опирались на сравнительно обособленные наблюдения отдельных переменных, то сегодня климатологи пытаются включить в интегрированный исследовательский подход как можно больше различных переменных, чтобы лучше понять климатическую систему в целом, т. е. учитывая все факторы – океаны, морские льды, биосферу и тому подобное.
В позапрошлом столетии границы климатических исследований в значительной степени зависели от технических возможностей установки измерительных метеорологических приборов. В 1920-х годах появилась возможность с помощью шаров-зондов, воздушных змеев, самолетов и радиозондов вести наблюдения на различной высоте. К слову, в процессе этих наблюдений в начале 1920-х годов была открыта стратосфера. Восхождения в горы и небезопасные полеты на воздушном шаре показали, что температура при подъеме на 100 м понижается где-то на 0,7 °С. На основании этого наблюдения Герман фон Гельмгольц (1821–1894) сделал вывод, что на высоте около 30 метров должен быть достигнут абсолютный ноль (–273 °С). Когда после первых измерений с помощью беспилотных воздушных шаров стало ясно, что после достижения 11-километровой высоты начинается зона постоянной температуры, многие метеорологи вначале усомнились в правильности измерений, но это была граница между тропосферой и стратосферой.
Лишь совершенно новые методы наблюдения привели к кардинальным переменам в климатологии, которая на протяжении вот уже нескольких десятилетий является не географической дисциплиной, а, скорее, физикой и химией окружающей среды. Неудивительно, что подобные тенденции вдохновили в первую очередь молодых метеорологов и что именно они, в свою очередь, способствовали смене парадигмы[1 - История перехода от чисто дескриптивного подхода к динамичному мышлению интересно описана в книге: Friedman R. M. Appropriating the Weather. Vilhelm Bjerknes and the construction of a modern meteorology. Cornell University Press, 1989. P. 251.]. В следующем разделе мы рассмотрим концепцию климата в этой «новой» климатологии.
3.2. Климат как естественнонаучная система
Чтобы показать разницу между описательной климатологией, основанной на географической традиции, и новыми, физико-климатическими исследованиями, мы для начала, в качестве примера типично «физического подхода» в метеорологии, рассмотрим парниковую теорию шведского химика Сванте Аррениуса (1859–1927). Сегодня многие ученые считают Аррениуса первооткрывателем парникового эффекта. Как это всегда бывает в науке, споры о том, кто «действительно первым» открыл, сформулировал, изобрел и так далее, совершенно бессмысленны. В действительности в науке одновременно и независимо друг от друга совершаются открытия, которые затем могут стать причиной спора о первенстве. Если смотреть еще шире, то, как правило, всегда можно найти кого-то другого, кто высказывал схожие идеи прежде или, по крайней мере, двигался в том же направлении. Аррениус в создании своей парниковой теории тоже опирался на достижения великих предшественников. Одним из них был французский математик Жан Баптист Жозеф Фурье (1768–1830). Но в конечном итоге современную теорию парникового эффекта разработал именно Аррениус, так что сегодня его первенство общепризнано. (Открытие и описание парникового эффекта Аррениусом отмечалось и обсуждалось в свете последних исследований в февральском номере журнала AMBIO за 1997 год).
В конце XIX века физики и химики активно обсуждали вопрос о том, какие факторы влияют на температуру в приземных слоях атмосферы. Этот вопрос возник в связи с новым научным знанием о ледниковом периоде, господствовавшем на Земле много тысяч лет назад, и с пониманием того, что приземная температура, по-видимому, неоднократно и существенно менялась на протяжении истории Земли. Аррениус, получивший впоследствии Нобелевскую премию по химии за другие свои достижения, утверждал, что приземная температура, а, следовательно, и температура воздуха достигает в точности того значения, при котором длинноволновое излучение Земли равно коротковолновому солнечному излучению. Если они не равны, то температура понижается или повышается до тех, пока не будет достигнут этот баланс. Согласно закону Стефана-Больцмана, длинноволновое излучение пропорционально 4-й степени температуры.
Если бы между источником энергии – Солнцем – и ее получателем – Землей – был вакуум, то средняя температура атмосферы Земли была бы равна – 10 °С. Фактически это, разумеется, не так, потому что между Солнцем и поверхностью Земли есть атмосфера, в которой, помимо облаков, содержится водяной пар и другие «парниковые газы». Эти газы, в частности, углекислый газ или метан, (тепловое) излучение и снова испускают его во все стороны, так что исходящая от земной поверхности энергия, которая в принципе должна была бы уйти непосредственно в Космос, частично улавливается и перенаправляется обратно в сторону Земли. Эти газы имеют подобное воздействие уже при очень низкой концентрации. Самый распространенный – наряду с водяным паром – парниковый газ СО
составляет лишь 0,03% атмосферного воздуха.
Предположим, что только 40% излучения «проходит» в космос, а 60% энергии отражается и попадает обратно на Землю. Тогда на поверхность Земли попадет не только коротковолновое излучение, но и отраженное длинноволновое излучение. Если бы наша система изначально имела температуру – 10 °С, то она стала бы нагреваться, так как происходило бы накопление энергии. Но потепление приводит к тому, что длинноволновое излучение становится более высокоэнергетичным, при том что в Космос по-прежнему уходят лишь 40%. Однако коль скоро интенсивность излучения возрастает пропорционально 4-й степени температуры, от земли в чистом виде будет отражаться больше энергии, чем до потепления. В конце концов, процесс потепления прекращается, когда достигающее Космоса излучение уравновешивает излучение, достигающее поверхности Земли. Очевидно, что эта «конечная температура» намного выше, чем – 10 °С, из которых мы исходили. Однако из-за того, что атмосфера не только отражает длинноволновое излучение, но и защищает приземный слой от коротковолнового излучения, поверхности Земли достигает не все солнечное излучение, а лишь небольшая его часть. Эта защита зависит от альбедо (отражательной способности)[1 - Альбедо есть выраженное в процентах свойство поверхности, например, земли или моря, отражать коротковолновое излучение. Пустыни обладают высоким альбедо, снег – еще более высоким, тогда как у лесов показатель альбедо низкий. У поверхности, запорошенной свежевыпавшим снегом, альбедо достигает 95%, тогда как поверхность моря может иметь альбедо менее 10%.], на которое, в свою очередь, влияют облака, морские льды, снежные покровы, пустыни и землепользование. Благодаря этому эффекту в конечном итоге мы получает среднюю температуру атмосферы Земли около 15 °С, что вполне соответствует действительности[2 - На самом деле, это, конечно, упрощенное изложение, т. к. на общую картину влияют и другие процессы, например, конвективная теплопередача.].
Это теория получила название «парниковой теории», что, однако, не совсем верно, так как температура в теплице нагревается по другим причинам, нежели температура наружного воздуха. В данной теории примечательно то, что она до сегодняшнего дня, т. е. на протяжении ста лет после первого опубликования, считается верной в том самом виде, в каком она была сформулирована изначально[3 - Ср. Arrhenius S. A. On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science. 1896. Nr. 41. P. 237–276. В оригинале – на немецком языке.]. Сванте Аррениус показал, что изменения концентрации углекислого газа в атмосфере могли быть причиной наступления ледникового периода. Он был убежден в правильности найденного объяснения. И действительно, анализ ледяных кернов показал, что ледниковые периоды были связаны с существенными изменениями концентрации двуокиси углерода (ледяной керн «Восток»). Однако речь здесь не идет о прямой причинно-следственной связи, так как вполне возможно, что изменение концентрации углекислого газа было вызвано изменениями климатических условий. Высказывались и другие убедительные гипотезы, объясняющие периодичность ледниковых периодов. В этой связи следует упомянуть прежде всего циклы Миланковича – гипотезу, связывающую изменения климата с изменениями в земной орбите.
«Побочным продуктом» размышлений Аррениуса стала оценка того, как быстро будет увеличиваться температура воздуха, если человечество, сжигая ископаемое топливо, удвоит концентрацию диоксида углерода в атмосфере. Сванте Аррениус исходил из повышения температуры примерно на 3 °С, но при этом полагал, что увеличение концентрации СО
вдвое может наступить не ранее, чем через 1000 лет, так как 85% углекислого газа сосредоточено в океане. Для общественно-политических дискуссий этот сценарий развития событий не имел большого значения[1 - См. также примечательный учебник: Arrhenius S. A. Das Werden der Welten. Leipzig, 1908. S. 208 и далее. В этой книге Аррениус четко и понятно описывает множество аспектов климатической системы, ошибаясь только в описании солнечных процессов из-за отсутствия знаний о ядерном происхождении солнечной энергии. Ему приходилось домысливать на основе неясных представлений о химических процессах. Этот случай мог бы стать уроком для современных исследователей, объяснительные модели которых тоже могут быть опровергнуты.]. Этот уровень в 85% и сегодня считается верным, но только для равновесного состояния. За нынешними, невероятно возросшими показателями выброса «океан уже не поспевает», так что в атмосфере сосредотачивается большое количество углекислого газа, и сценарий увеличения его концентрации в атмосфере вдвое в ближайшие 30–70 лет представляется вполне реалистичным (см. отчеты МГЭИК за 1990, 1992 под редакцией Хьютон и коллег). Мы еще рассмотрим вопрос изменения климата под влиянием человеческой деятельности в четвертой главе.
Итак, мы видим, что эти климатологические изыскания не ограничиваются подробными измерениями и обработкой их результатов с целью сформулировать ценные рекомендации для планирования человеческой деятельности в различных областях. Здесь мы имеем дело с дедуктивными выводами из фундаментальных законов физики, в данном случае из первого закона термодинамики – закона сохранения энергии. Климат оказывается в центре интеллектуальной любознательности, и значение наблюдений сводится к «верификации» гипотез, теорий и моделей. Тем не менее, подобные научные методики, относящиеся скорее к области фундаментальных исследований, привели к открытиям, взбудоражившим международную политику. Понятие «парниковый газ» стало общеупотребительным и уже не нуждается в объяснениях, когда речь о нем идет, например, в телевизионных новостях. Следует отметить, что в данном случае именно наука обнаруживает проблему и формулирует ее именно как проблему для обсуждения и решения в политике и обществе. Глобальное изменение климата, парниковый эффект и повышение температур не являются бытовой проблемой. Именно научные открытия и научные формулировки проблемы определяют в данном случае характер и масштаб политических мер. Подробнее об этом мы расскажем в четвертой главе.
Рис. 12. Описание ячеистых структур циркуляции атмосферы, сделанное Джорджем Хэдли в XVII веке в условиях неполной информации.
Ср. также с современной схемой на рисунке 14.
Другие значимые работы, в которых предпринимается попытка объяснить всеобщую атмосферную циркуляцию (например, факт существования областей пассатов), принадлежат перу английского ученого Джорджа Хэдли (1685–1768). Несмотря на то, что ему были доступны лишь очень немногочисленные эмпирические данные, Хэдли верно сформулировал основные положения теории общей циркуляции воздуха (рисунок 12), в частности, пассатов, не имея возможности вывести из своей теории другие важные аспекты данного явления.
Философ Иммануил Кант (1724–1804) также внес свой вклад в изучение этого явления. Проанализировав результаты наблюдений мореплавателей за изменениями ветра в Юго-Восточной Азии, он пришел к выводу, что дальше на юге должен находиться еще один континент – на тот момент еще не открытая Австралия.
Очередной прорыв в области физической климатологии связан с именами таких исследователей, как норвежец Вильгельм Бьёркнес (1862–1951), который внес большой вклад в объяснение внутренней структуры штормов в средних широтах, швед Карл Густав Россби (1898–1957), который выявил причины неустойчивости погоды в средних широтах, и, наконец, американец Джон Нойманн (1903–1957), который после второй мировой войны раньше других понял, какие возможности открывает электронная обработка данных перед метеорологией, и применил новые подходы на только появившихся в то время компьютерах. Это компьютерное моделирование с целью прогноза погоды легло в основу современных климатических моделей; важнейший вклад в развитие этой области внесли метеорологи и океанографы Сьюкуро Мэйнаби и Кирк Брайан из Геофизической лаборатории гидродинамики в Принстоне.
В современной климатологии климатическая система трактуется как взаимодействие или процесс взаимного влияния атмосферы, гидросферы, криосферы и биосферы и не ограничивается исключительно приземной атмосферой. На передний план выходят уже не описательные исследования, а прежде всего системно-аналитический подход. Краткое изложение современных подходов к климатической системе можно найти в работах Жуссом (Joussaume 1996), Филэндера (Philander 1998) и фон Шторха с соавторами (von Storch et al. 1999). Принцип действия здесь аналогичен принципу действия теплового двигателя, работающего благодаря разнице температур в камере сгорания и радиаторе. Применительно к атмосфере мы можем говорить о том, что «активным элементом» являются (тропические) камеры сгорания, тогда как в океанической системе поддержание (термической и галинной) циркуляции обеспечивается (субполярным) «радиатором».
Рис. 13. Норвежский метеоролог и создатель теории полярных фронтов Вильгельм Бьёркнес, портрет кисти Рольфа Гровена. Портрет выставлен на факультете геофизики Университета г. Бергена.
Рис. 14. Современная схема общей циркуляции атмосферы.
Источник: von Storch H., G?ss S., Heimann M. Das Klimasystem und seine Modellierung. Eine Einf?hrung. Springer Verlag, 1999. S. 255 и далее.
Современное понимание циркуляции атмосферы схематично представлено на рисунке 14.
Нагревание атмосферы происходит в первую очередь в тропиках за счет поступления солнечного тепла в виде коротковолнового излучения. Приземный воздух в тропиках сильно нагревается, вследствие чего стратификация атмосферы становится нестабильной. Воздух в низших слоях атмосферы становится легче воздуха более высоких слоев. Это приводит к интенсивному перемещению воздуха, усиливаемому наличием водяных испарений. Воздух, поднимающийся наверх, расширяется, остывает и уже не в состоянии удерживать пар в прежнем объеме. Часть паров конденсируется, и в результате снова высвобождается тепловая энергия, изначально задействованная в испарении воды. (В этом случае говорят также о «скрытой тепловой энергии», в отличие от «воспринимаемой тепловой энергии», связанной с температурой). Эта высвободившаяся энергия нагревает воздух, который опять становится легче своего окружения и, следовательно, продолжает движение вверх. Если вы летите на самолете в тропической зоне, вы можете наблюдать этот процесс по гигантским нагромождениям облаков, которые нередко скапливаются даже выше уровня полета, т. е. выше 11–13.000 метров.
У верхней границы тропосферы (за которой начинается стратосфера, где господствуют совершенно иные условия, поскольку происходящие там процессы определяются химическими реакциями и высвобождающейся в результате энергией), т. е. на высоте 10–14.000 метров, поднимающийся вверх воздух направляется к полюсам и постепенно опускается в субтропиках. Завершается цикл движением приземных потоков воздуха в направлении экватора – пассатами. При этом установившиеся режимы ветра не всегда направлены точно на север (в южном полушарии) или точно на юг. Вследствие вращения Земли (под влиянием силы Кориолиса) эти течения воздуха принимают северо-западное или юго-западное направление.
Все книги на сайте предоставены для ознакомления и защищены авторским правом