Дэвид Рид "Нейросети. Основы"

Глубокое погружение в мир нейросетей начинается здесь. От основных концепций до практических проектов, эта книга исследует все аспекты создания и использования нейронных сетей. Вы узнаете, как работают различные типы сетей, научитесь применять их для решения реальных задач и овладеете методами оптимизации и тестирования моделей. Незаменимый ресурс для всех, кто стремится освоить и применить мощь искусственного интеллекта в своих проектах.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 17.07.2024

done = False

while not done:

action = choose_action(state)

next_state, reward, done, _ = env.step(action)

update_q_table(state, action, reward, next_state)

state = next_state

# Тестирование агента после обучения

state = env.reset()

done = False

total_reward = 0

while not done:

action = np.argmax(q_table[state])

state, reward, done, _ = env.step(action)

total_reward += reward

env.render()

print(f"Total reward after training: {total_reward}")

env.close()

```

Объяснение кода

1. Инициализация окружения и параметров:

– Создаем окружение `CliffWalking-v0` из OpenAI Gym.

– Устанавливаем параметры Q-обучения: `alpha` (скорость обучения), `gamma` (коэффициент дисконтирования) и `epsilon` (вероятность выбора случайного действия).

2. Инициализация Q-таблицы:

– Q-таблица инициализируется нулями. Она будет хранить Q-значения для всех пар «состояние-действие».

3. Выбор действия:

– Используем ?-жадную стратегию для выбора действия. С вероятностью `epsilon` выбирается случайное действие, иначе выбирается действие с максимальным Q-значением для текущего состояния.

4. Обновление Q-таблицы:

– Вычисляем целевое значение (TD target), состоящее из текущего вознаграждения и максимального Q-значения для следующего состояния.

– Обновляем Q-значение для текущей пары «состояние-действие» с использованием разности TD (TD error).

5. Основной цикл обучения:

– В каждом эпизоде агент взаимодействует с окружением, выполняя действия и обновляя Q-таблицу на основе полученного опыта.

– Процесс повторяется до тех пор, пока агент не достигнет конечного состояния.

6. Тестирование агента:

– После завершения обучения агент тестируется в окружении, используя политику, основанную на максимальных Q-значениях.

– Выводится общее вознаграждение, полученное агентом.

Этот пример демонстрирует базовый алгоритм Q-обучения и его применение в простой среде. Q-обучение эффективно используется в задачах обучения с подкреплением, где агент должен принимать решения, основываясь на опыте взаимодействия со средой.

Случайные блуждания (Методы Монте-Карло)

Методы Монте-Карло (Monte Carlo methods) представляют собой класс алгоритмов, которые используют случайные блуждания для оценки стратегий на основе долгосрочных наград. В отличие от Q-обучения, методы Монте-Карло не требуют знания модели среды. Вместо этого, они основываются на многократных симуляциях взаимодействия агента со средой, в ходе которых вычисляются средние значения наград. Каждая симуляция представляет собой эпизод, включающий последовательность состояний, действий и полученных вознаграждений до достижения конечного состояния. После завершения эпизода метод Монте-Карло обновляет оценки значений состояний или действий, используя накопленные награды. Это позволяет агенту улучшать свою политику, опираясь на накопленный опыт.

Рассмотрим пример использования методов Монте-Карло для обучения агента в задаче "Blackjack" из OpenAI Gym. В этой задаче агент учится играть в блэкджек, используя эпизодическую оценку долгосрочных наград.

Описание задачи и игры "Blackjack"

"Blackjack" (или "21") – это популярная карточная игра, в которой игрок соревнуется против дилера. Цель игры – набрать количество очков, как можно ближе к 21, но не больше этого числа. В OpenAI Gym среда "Blackjack-v1" симулирует эту игру и предоставляет интерфейс для обучения агентов.

Правила игры

1. Карты и их значения:

– Номера карт от 2 до 10 имеют номинальную стоимость.

– Валет, Дама и Король (карты с картинками) имеют стоимость 10 очков.

– Туз может считаться как 1 очко или как 11 очков, в зависимости от того, что лучше для руки.

2. Начало игры:

– И игрок, и дилер получают по две карты.

– Одна из карт дилера открыта, а другая скрыта.

3. Действия игрока:

– Hit: Игрок берет еще одну карту.

– Stand: Игрок прекращает набор карт и передает ход дилеру.

4. Ход дилера:

– Дилер открывает свою скрытую карту.

– Дилер должен продолжать брать карты (hit), пока сумма его очков не станет 17 или больше.

5. Определение победителя:

– Если сумма очков игрока превышает 21, он проигрывает (bust).

– Если игрок и дилер остаются в игре (не превышают 21), выигрывает тот, у кого сумма очков ближе к 21.

– Если у дилера сумма очков превышает 21, дилер проигрывает (bust).

– Если сумма очков у игрока и дилера одинакова, игра заканчивается вничью (push).

Задача агента – научиться принимать оптимальные решения (hit или stand) в различных состояниях игры, чтобы максимизировать свое общее вознаграждение (выигрыши).

Установка необходимых библиотек

Для начала нужно установить OpenAI Gym, если он еще не установлен:

```bash

pip install gym

```

Пример кода

```python

import numpy as np

import gym

from collections import defaultdict

# Создаем окружение "Blackjack-v1"

env = gym.make('Blackjack-v1')

# Параметры Монте-Карло

num_episodes = 500000

gamma = 1.0 # Коэффициент дисконтирования

# Функция для выбора действия на основе ?-жадной стратегии

def epsilon_greedy_policy(state, Q, epsilon=0.1):

if np.random.rand() < epsilon:

return env.action_space.sample()

else:

return np.argmax(Q[state])

# Инициализация Q-таблицы и возвратов

Q = defaultdict(lambda: np.zeros(env.action_space.n))

returns_sum = defaultdict(float)

returns_count = defaultdict(float)

# Основной цикл обучения

for episode in range(num_episodes):

state = env.reset()

episode = []

done = False

while not done:

action = epsilon_greedy_policy(state, Q)

next_state, reward, done, _ = env.step(action)

episode.append((state, action, reward))

state = next_state

# Обновление Q-таблицы на основе эпизодических возвратов

G = 0

for state, action, reward in reversed(episode):

Все книги на сайте предоставены для ознакомления и защищены авторским правом