Евгений Николаевич Рычков "Исследование новых и нестандартных видов модуляции на основе OFDM-технологии"

Рассмотрена технология ортогонального частотного разделения с мультиплексированием в контексте поиска новых алгоритмов для улучшения помехоустойчивости систем связи.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785006426092

child_care Возрастное ограничение : 18

update Дата обновления : 26.07.2024


 с учетом длительности OFDM-символа T

можно представить в следующем уравнении [139]:

(1.1)

Ортогональность не нарушается при любом разносе между частотами вследствие свойства БПФ. Однако нужно учитывать возможность нарушения синхронизации в системе, эффекты Доплера в канале, где доплеровский сдвиг зависит от частоты, поэтому возникает ограничение на минимальный частотный разнос между поднесущими частотами в спектре OFDM-сигнала. Также принято использовать по возможности целое количество периодов сигнала для каждой поднесущей частоты, но на практике это условие ограничивает скорость связи, ведь необходимо выполнение соотношения между длительностью OFDM-символа и частотным разносом между поднесущими частотами.

После добавления циклического префикса во временной области сообщение, полученное в результате группировки сигналов в один поток, проходит операцию перемножения с весовым окном, затем преобразуются в аналоговую форму с помощью ЦАП. В первом приближении может быть рассмотрено дискретное преобразование Фурье (ДПФ и соответствующее ему ОДПФ (обратное)) применительно к системам связи с OFDM-сигналами вместо операции БПФ. Сигнал после операции ОДПФ представляется формулой:

(1.2)

где k – номер выборки в частотной области, n – номер выборки во временной области, N – количество точек ОДПФ, X

 – комплексная амплитуда на поднесущей частоте. Передатчик формирует сигнал, сообщение в котором распределено между спектральными составляющими. В сигнал добавляются циклический префикс (ЦП), нулевые и пилот- поднесущие сигнала. Если нет дублирования, то кратковременные флуктуации уровня сигнала в узкой полосе частот приведут к искажению нескольких битов, однако за счет более низкоскоростной передачи большего количества символов одновременно это отклонение значения можно выявить и скомпенсировать.

В настоящее время известно, что при переносе частоты в радиочастотную область комплексно-сопряженные значения частот становятся поднесущими частотами, дублирующими информацию на интервале ниже несущей частоты гетеродина. Во время операции БПФ можно не задавать комплексно-сопряженные значения, но классической является ситуация, где каждой несущей частоте соответствует комплексно-сопряженная частота на интервале выше половины частоты дискретизации. Тогда необходимо формировать сигнал следующим образом:

где

– комплексно-сопряженное число для одного из комплексных чисел, получившихся на выходе квадратурного модулятора.

Чтобы повысить помехоустойчивость к замираниям, может быть задействован разнесенный в пространстве прием. Встречаются аббревиатуры, такие как «MIMO OFDM» (Multiple In Multiple Out – множественный вход, множественный выход) [82]. Для того, чтобы ограничить объемы исследований, это направление не рассматривается в данной работе, поэтому предпочтение отдается SISO-технологии (по одной передающей и приемной антеннам) с учетом на то, что MIMO может быть использована при необходимости и может применяться совместно с исследуемыми алгоритмами.

Положительные стороны применения технологии OFDM [49, 116].

– Высокая эффективность использования радиочастотного спектра, объясняемая почти прямоугольной формой огибающей спектра при большом количестве поднесущих частот.

– Простая аппаратная реализация: базовые операции реализуются методами цифровой обработки.

– Хорошее противостояние межсимвольным помехам (ISI – intersymbol interference) и интерференции между поднесущими (ICI – intercarrier interference). Как следствие – лояльность к многолучевому распространению.

– Возможность применения различных схем модуляции для каждой поднесущей, что позволяет адаптивно варьировать помехоустойчивость и скорость передачи информации.

– Отрицательные стороны использования технологии OFDM [49, 116].

– Необходима высокая синхронизация частоты и времени.

– Чувствительность к эффекту Доплера, ограничивающая применение OFDM в мобильных системах.

– Неидеальность современных приёмников и передатчиков вызывает фазовый шум, что ограничивает производительность системы.

– Защитный интервал, используемый в OFDM для борьбы с многолучевым распространением, снижает спектральную эффективность сигнала.

– Относительно большой пик фактор сигнала (с которым борются ограничением амплитуды [116]).

Из комплексного выражения (1.2) необходимо получить физический сигнал, который просто можно подать на антенну и получить на приемной стороне. Если нет прямого синтеза частоты, то есть если I и Q компоненты сигнала на низких частотах относительно несущей частоты, то необходимо так же перенести сигнал в высокочастотную область. Существуют различные схемы переноса комплексного сигнала на радиочастоту. Может применяться простое суммирование с двух смесителей (С), на входы которых поступают фильтрованные (ФНЧ) I- и Q- компоненты, умноженные на несущую гармонику, фаза которой для синфазной составляющей соответствует нулевой фазе косинусоиды, а для квадратурной – нулевой фазе синусоиды.

В таком случае недостатком является вторая боковая полоса (если не закладывать информацию в зеркальные или отрицательные частоты). Этого недостатка лишена схема Уивера, однако появляются минусы: невозможность напрямую сформировать промежуточный квадратурный сигнал сразу на нулевой частоте или на другой промежуточной частоте, относительно большое количество вычислений по процедуре ОБПФ и БПФ, необходимость применять высокочастотные устройства для получения и обработки первичного OFDM-сигнала.

Разработка модели канала связи и прием сигнала, прошедшего многолучевой канал

В канале связи OFDM-сигнал подвергается не только воздействию аддитивного белого Гауссова шума, но и эффекту многолучевости. В зависимости от характера распределения волн законы огибающей сигнала могут задаваться распределениями Рэлея, Накагами и другими. Уровень замираний сигнала может быть незначительным, а может достигать 40 дБ и более. Импульсная характеристика многолучевой среды распространения описывается формулой:

(1.3)

где h

 – передаточные коэффициенты лучей многолучевого сигнала, ?

 – их фазы, k

 – задержки лучей в выборках, ? (n- k

) – функция Кронекера, m – номер луча, L – суммарное число лучей. В случае домашней связи, например, по сети WiFi, в первом приближении функцию h

можно описать распределением Рэлея, а ?

 – равновероятным распределением. Стоит отметить, что в случае, когда нет прямого луча, формулой Рэлея описывается именно огибающая радиосигнала, то есть изменение коэффициента передачи суммы всех лучей описано по данному закону [54].

В тропосферном канале аналогией непостоянства скорости звука является профиль коэффициента преломления в среде распространения. Причиной неоднородностей в тропосфере служат турбулентные передвижения воздуха за счет нагрева у земной поверхности и охлаждения на высоте. Эти турбулентности имеют зависимость от метеоусловий и от других природных относительно медленных факторов, что проявляется в медленных замираниях, описываемых нормально-логарифмическим законом [18]. Так же вклад вносят профили давления и влажности тропосферы, так как из-за разницы давлений возникает неоднородность, например, в составе воздуха, а за счет влажности изменяется коэффициент преломления в среде. Уровень замираний в тропосферной связи, то есть отношение максимальной энергии сигнала к минимальной, достигает величины 40 дБ [18].

Так как разработка канала связи для тропосферных или мобильных систем является относительно распространенной и исследованной, рассмотрим прохождение OFDM-сигнала через модель канала связи, с которой ранее не проводилось экспериментов с использованием OFDM-сигналов. В качестве базовой модели канала связи применим результаты работ А. В. Вагина и К. В. Авилова применительно к системам гидроакустической подводной связи. Расположение передатчика принято за начало координат, он расположен на глубине 100 м. Приемник располагается на глубине 50 м. Возьмем следующий результат расчета по программе А. В. Вагина: расстояние между передатчиком и приемником X = 10.0000 km, глубина моря Zморя = 5.00000km, AS – угол скольжения в точке излучения, AR – угол скольжения в точке приема, R – расстояние, пройденное лучем, T – время прохождения луча, FSB – значение, связанное с передаточным коэффициентом луча, FAZ – фаза луча без учета набега из-за отражения от дна.

С помощью модернизированной программы А. В. Вагина [7], где расчет многолучевой картины ведется для множества поднесущих частот, построим передаточную функцию канала. Импульсная характеристика должна представлять сумму функций кронекера, находящихся на соответствующих временах задержки и обладающих соответствующими коэффициентами ослабления. На рис. 1.1 представлены увеличенные значения импульсной характеристики, на которых расположены функции Кронекера. За счет шага дискретизации функция немного размыта.

На рис. 1.1 лучи располагаются примерно на выборках 122937, 122961, 123357, 123371, 123375, 123384, что соответствует временам 122937/18000 c = 6.8298 c, 122961/18000 c = 6.8312 c, 123357/18000 c = 6.8532 c, 123371/18000 c = 6.8539 c, 123375/18000 c = 6.8542 c, 123384/18000 c = 6.8547 c, что соответствует рассчитанным в программе А. В. Вагина задержкам лучей. При этом временной разброс составляет величину порядка нескольких мс. Результат расчета затухания в канале связи показан на рис. 1.2.

A

Б

Рисунок 1.1 – Импульсная характеристика подводного акустического канала в разных масштабах (А, Б)

На рис. 1.2 рассчет проведен по 3-м известным формулам, описывающим зависимость затухания от частоты для гидроаккустических сигналов. Р. А. Вадов и Франкойс-Гаррисон занимались исследованиями затухания в гидроакустическом канале связи, и результаты их работ представляются в программном обеспечении Акустического института им. ак. Н. Н. Андреева. Для вычислений использованы следующие параметры [7]:

% % Баренцево море

% f = [1.5:0.02:4.5] %Частота в кГц

% z=100; % Глубина в метрах

% t=2; % температура в град. Цельсия

% s=34.5; % солёность в промиле

% pH=8; % – кислотность

% XLAT=70; % Широта мало влияет, можно взять константой

Рисунок 1.2 – Результат расчета коэффициента затухания в дБ/км в зависимости от частоты

Считая, что модель затухания в Баренцевом море близка к модели затухания в Охотском море, можно принять вышеуказанные данные для расчета каждой точки H

передаточной функции канала:

(1.4)

где L – номер луча, Nl – номер последнего луча, I

+ i.

 – комплексное число передаточной функции на конкретной частоте, модуль которого является амплитудой луча a

Все книги на сайте предоставены для ознакомления и защищены авторским правом