Эдуард Ваганович Осипов "Наноматрицы шунгита: возникновение жизни и восстановление здоровья без лекарств"

Возникновение жизни на Земле, или Волшебное Чудо во Вселенной, до сих пор остается неразгаданной тайной. происхождении жизни, или абиогенеза – процесса превращения неживой природы в живую. В настоящей работе рассматривается не известная ранее научная версия влияния на происхождение жизни фуллеренов.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785006427440

child_care Возрастное ограничение : 12

update Дата обновления : 26.07.2024

ГЛАВА 3. Сюрпризы шунгита Sh-III – ключевой фактор самоорганизации углеродных фуллерено-подобных квази-кристаллических частиц

3.1. Противоречивые данные о концентрации фуллеренов в шунгитах

Необходимым и достаточным условием естественной самоорганизации фуллерено-подобных квази-кристаллических частиц в процессе длительного контакте Sh-III с водой является уникальные свойства шунгитового углерода С

и достаточная концентрация природных фуллеренов.

Природные фуллерены (С

и С

) были первоначально открыты в процессе исследования механизма формирования молекул углерода [13] в космических условиях, в так называемых углеродных звездах или в ближайшем их окружении. О том, что фуллерены имеются в земной коре, стало известно уже после их открытия, т.е. после присуждения Нобелевской премии 1996 года, вызвавшей небывалый интерес к новой форме существования материи. Правда, содержание их невелико и распределены они весьма неравномерно, поэтому химические исследования земных фуллеренов вряд ли сегодня можно считать полными. Удалось определить время появления исследованных фуллеренов на Земле. Кратер от падения канадского метеорита образовался 1,85 млрд лет назад, в архейскую эру, когда Земля еще была безжизненна, «безвидна и пуста». Другие фуллерены появились гораздо позже.

Горные породы, похожие на Sh, найдены и в других странах: Казахстан, Канада, Индия. Согласно статье в журнале Geological Society of India в 2007 г., фуллерены найдены в горных породах Mangampet. Основные надежды Mineral DevelopmentCorporation связаны с получением чистых фуллеренов из этой горной породы для коммерческих целей. Однако, пока о практических результатах такого производства фуллеренов никаких сообщений нет.

До 1993 г. ни в одной из опубликованных работ не был выявлен свободный углерод в экстрактах на основе неполярных растворителей, традиционных для извлечения фуллеренов из синтетических фуллеренсодержащих саж. После установления факта появления под действием мощного лазерного излучения фуллеренов в ряде высокоуглеродистых Sh [10] и начала систематических работ в этом направлении, концентрация наиболее распространенных С

и С

в экстрактах на основе неполярных растворителей оценивалась от следовых количеств [14, 15] до 0,1% [16]. Низкие оценки концентрации фуллеренов в Sh могут быть обусловлены рядом факторов. Наиболее существенными из них являются как техника измерения, так и ее интерпретация. Например, Mossman [17] подтвердил присутствие фуллеренов в Onaping Formation, Black Tuff из Sudbury, Ontario, но не нашел фуллеренов в высокоуглеродистых Sh из района Онежского Озера в Карелии. Ранее авторы [10] отмечали, что отсутствие природных фуллеренов в Sh, может быть связано с чрезвычайной неоднородностьюпороды. Авторы [17] утверждают: «Альтернативные объяснения включают в себя возможность того, что природные фуллерены не встречаются в Sh, или, что открытие природных фуллеренов в Sh, возможно, было артефактом анализа». Потенциальной проблемой в этих исследованиях является то, что при определенных условиях эксперимента фуллерены могут генерироваться лазерным излучением, искажая полученные результаты. Например, в условиях лазерной абляции (плотность мощности излучения лазера больше, чем 10

Вт/см

), фуллерены могут быть получены из графитового материала. Именно такая ситуация имеет место в [10], где впервые предполагалось наличие фуллеренов в Sh. Плотность мощности в этой работе была достаточной для разложения C

 синтеза C

из сажи. Поэтому эти результаты лишь подтверждают возможность синтеза фуллеренов в C

при внешних воздействиях. Более того, отсутствие калориметрических данных о существовании природных фуллеренов в C

, ограниченное пространство для формирования кристаллического фуллерита и наши данные об глобулярной организации C

являются причиной полагать, что SEM микрофотографии высокого разрешения в работе [10] соответствуют лишь глобулярной организации сажевого углерода.

Напротив, другие исследователи, например, G. Parthasarathy et al. [14] сообщают, что обнаружили природные фуллерены в образцах Sh из Кондопоги, другого месторождения Sh в Карелии (60 км юго-западнее Шуньги). Образец Sh был блестящим и содержал ~10 вес. % углерода. Для обнаружения природных фуллеренов G.Parthasarathy вместо LDI, который, как известно, создает фуллерены под действием лазерного излучения, использовал масс-спектрометр ионов высокой энергии EIMS (electron-impact ionization mass spectrometer). Для большей надежности наличие природных фуллеренов в Карельских Sh проверяли еще с помощью XRD (powder X-ray diffraction) и NMR (

C-nuclear magnetic resonance). Они пришли к выводу, что природные фуллерены (C

и C

, измеренные до ppb) в Sh существуют.

Совершенно другой подход к оценке содержания фуллеренов в Sh использовали в [18]. Относительно низкая концентрация фуллеренов (менее 0,01%) не позволяет рассматривать их как вещество ответственное за каталитические, медико-биологические и водоочистные свойства Sh. В этом случае известные полезные свойства Sh должны связываться с особенностями его структуры, в частности глобулярной организацией углеродного вещества и возможным фуллереноподобием С-глобул. Расчетная оценка предельно допустимой концентрации фуллеренов соответствует аналогичной концентрации в водном экстракте Sh при катодном осаждении совместно с сажевой компонентой. Сравнительный анализ макрофизических величин Sh-1, графита, стеклоуглерода и фуллерита С

допускает присутствие до 50% фуллеренов в составе сажевой компоненты С

. Такая оценка позволяет рассматривать С

как глобулярно организованную матрицу, включающую природную фуллеренсодержащую сажу, а фуллерен – как одну из основных компонент, ответственных за фильтрующие, биоактивные и каталитические свойства Sh. Анализ плотности, пористости и ряда других макрофизических параметров стеклоуглерода, графита, фуллерита С

и Sh-1 указывают [18] на возможность присутствия (до 3%) фуллеренов в C

Хотя споры о том, есть фуллерены в шунгитах или нет, идут до сих пор, природные фуллерены, как нами установлено, не только могут исходно присутствовать в некоторых модификациях горной породы Sh-III, но при определенных условиях, даже синтезироваться в процессе водной экстракции фуллеренов из шунгита Sh-III. При этом, каких фуллеренов будет больше, зависит не только от модификации шунгита и минеральной компоненты, но и от содержащихся в них примесей (главным образом металлических и серы) и типа растворителя.

3.2. Модификации шунгита Зажогинского месторождения

Свойства Sh зависят не только от содержания углерода, но и от минеральной компоненты, которая даже при относительно постоянном содержании углерода может резко различаться по составу в пределах одного небольшого куска. Дальнейшие исследования показали, что одни месторождения Sh действительно содержат фуллерены, в то время как другие – лишь сажистые вещества [19]. Даже Sh-1, в котором с помощью мощного лазерного излучения удалось создать фуллерены [10] и который все считают наиболее перспективным для получения наибольшего количества фуллеренов, мало пригоден для образования гидратированных фуллеренов. Sh-1 в воде не растворяется! Исследования биологической активности гидратированных фуллеренов показали, что они являются мощнейшими антиоксидантами длительного действия. Они оказывают противовирусное, антиамилоидное, противоаллергическое, противоопухолевое, гепатопротекторное, антиатеросклеротическое действие, стимулируют иммунную систему и предупреждают возрастные изменения в организме.

Механизм взаимодействия Sh-III с водой основан на его способности как сильного восстановителя поглощать кислород, активно взаимодействуя с ним в воде и на воздухе. В этом процессе образуется атомарный кислород, который, как подчеркивает «The international recycling symbol», (http://en.wikipedia.org/wiki/Recycling_symbol)является сильнейшим окислителем и окисляет адсорбированные органические вещества до CO

и H

O, освобождая поверхность Нанопорошка для новых актов адсорбции. Появилась уникальная возможность разлагать небольшие концентрации различных органических примесей (гептил, диоксин, лекарства и т.д.), нейтрализовать следы фармацевтических препаратов, которые проходят незамеченными через все современные системы очистки. В природе нет веществ, способных на это, кроме Sh-III.

Выбор нами Sh-III с концентрацией углерода 28—32% определен с одной стороны, их промышленной значимостью, а с другой – постепенным уменьшением механической прочности по мере роста концентрации углерода с 28 до 32% за счет смены типа несущей матрицы с кремнисто-алюмосиликатной – на углеродную. В результате, как следствие получаем наименьшее сопротивление к истиранию, что важно для получения нанопорошков.

Чтобы быстро добиться сохранения и повторяемости уникальных свойств Sh-III, необходимо получение Нанопорошка (размер частиц менее 1 микрона), содержащего природные фуллерены. Нанопорошки позволяют более эффективно взаимодействовать с водой и приводить к образованию гидратированных фуллеренов. Если роль углерода в развитии жизни, как структурной основы всех организмов, общепринята и является неотъемлемой частью эволюции, то роль шунгитового углерода не столь ясна.

3.3. Уникальный шунгитовый углерод C

C

не похож на все известные углеродные материалы: такого неповторимого сочетания практически всех видов углеродных аллотропов нет ни в одной горной породе, кроме карельского Sh-III. Sh-III кроме макро- и микроэлементов, содержит минеральную и углеродную компоненты, включающие примеси алюмосиликатов, карбонатов и сульфидов металлов. Между углеродной и силикатной компонентой существует прочная связь. Такая структура и состав пород сообщают Sh-III ряд необычных физических, химических, физико-химических и технологических свойств. По составу, структуре и свойствам образования Sh-III уникален, а термин «шунгитовый углерод» (C

) закрепился, благодаря его непохожести на все известные углеродные материалы:

– С

представляет собой необычный по структуре природный нанокомпозит – состоящий из двух взаимопроникающих матриц из наноразмерных частиц углерода и кремнезема.

– Минеральная и углеродная матрицы насыщены специфическим (не графитизируемым, т.е. не покрывающим в виде графита) углеродом в некристаллическом состоянии, характеризуемое отсутствием дальнего порядка в расположении атомов.

– В отличие от обычных углей – не горит, хотя содержит много углерода.

– Различие между C

и графитом – значительно. Из графита можно получить алмаз, из алмаза – графит. Но из графита нельзя получить C

и из C

 – графит.

– В отличие от стеклоуглерода, который получают при температурах выше 2000 

С, в C

полностью отсутствует карбид кремния, т. е. Sh никогда не нагревался до таких температур.

– Основным отличиемC

от всех известных углеродных материалов является наличие в нем глобул – эллипсоидных многослойных образований с порой внутри, в основе которых лежит гексагонально-подобная ячейка углеродных атомов с анизотропией искажений в двух неэквивалентных направлениях.

– Большая часть аллотропных форм углерода не только содержатся в С

, но и определяют его основные свойства.

Рис.9. Аллотропы углерода в структуре шунгитового углерода.

Углерод, имеющий первостепенное значение для Sh, не является ни черным, ни прозрачным, ни мягким, ни твердым, ни проводником, ни изолятором. Все зависит от структуры его молекулярнойорганизации. Аллотропные модификации углерода по своим свойствам наиболее радикально отличаются друг от друга: от мягкого к твёрдому, от непрозрачного к прозрачному, от абразивного к смазочному, от недорогого к дорогому.

Алмаз (электрический изолятор) – трехмерная (пространственная) форма углерода, которая сформирована атомами углерода в состоянииsp

-гибридизации.

Графит (проводник) – двумерная (плоскостная) форма углерода, которая сформирована атомами углерода в состоянии sp

-гибридизации.

Карбин (полупроводник) – линейная форма углерода с sp-гибридизацией атома углерода.

Аморфные (древесный уголь, сажа, нано-пена) и кристаллические (нанотрубки, алмазы, фуллерены, графит, лонсделит) аллотропы углерода:

– Графито-подобные пакеты одинаковые (3 х 3 нм) [20], (1 нм=10

 метра).

– Графены (Нобелевская премия по физике за 2010 год) представляют собой однослойные двумерные углеродные структуры, поверхность которых регулярным образом выложены правильными шестиугольниками со стороной 0,142 нм и атомами углерода в вершинах. Графен является одним из структурных элементов С

Все книги на сайте предоставены для ознакомления и защищены авторским правом