ISBN :9785002234356
Возрастное ограничение : 999
Дата обновления : 12.11.2025
А там, как мы видели в главе 4, вращение теряет наглядность. Из-за вражды невозможно указать ось вращения, и из трех величин, которые нужны для привычного описания этого явления, определены только две, причем и они могут принимать только дискретные значения. Мы называли их атрибутами вращения, потому что это те «остатки» от наглядной картины вращения, которые только и возможны в квантовой механике. Каждый электрон в атоме обладает какими-то атрибутами вращения, но в этой главе нас в первую очередь интересуют электроны сами по себе, вне всякой связи с атомами. Любой электрон, оказывается, обладает своими собственными атрибутами вращения, хотя внутри него ничего подходящего для вращения нет, потому что никакого «внутри» тоже нет[31 - Быть может, стоит прокомментировать потерю наглядности, начав с электрона в атоме. Он не движется там по какой бы то ни было траектории (и вообще не находится в определенной точке пространства ни в какой момент времени), но интуитивно трудно отделаться от ощущения, что он все-таки «как-то там вращается». В действительности же наглядной картины нет, ее заменяют те самые два «атрибута вращения»; вместе с уровнем энергии они и описывают, «как устраиваются» электроны в атомах. Сейчас же обсуждаются атрибуты вращения, которые относятся к электрону самому по себе – прикреплены к нему постоянно и неотъемлемо, вне всякой связи с атомом. Для них наглядной картины, разумеется, нет, но ведь ее не было и в отношении атрибутов вращения электрона в атоме: ответа на вопрос «как и что вращается», если иметь в виду наглядную картину вращения, не предполагается ни в том, ни в другом случае. Квантовая механика не требует никаких подробностей, если выполняются формальные соотношения.].
Отказаться от своих атрибутов вращения электрон не может. Они всегда с ним, причем в значительной степени фиксированы количественно: строго определенная «степень раскрутки» приделана к электрону раз и навсегда. Как и все остальное, связанное с электроном, это его качество «никак не выглядит» (не имеет визуального образа), однако проявляет себя в виде магнитных свойств, поскольку у электрона есть еще и электрический заряд. Правда, из-за отягощенности враждой магнит из электрона получается не совсем обычный.
В отношении обычных магнитов у нас есть определенные ожидания. Каждый магнит ориентирован вдоль какой-то линии в пространстве, просто потому что у него есть два полюса, через которые можно мысленно провести прямую. Если договориться проводить ее от южного магнитного полюса к северному, то каждый магнит определит какое-то направление в пространстве. Даже если магнит очень маленький и два полюса находятся совсем близко друг к другу, такое направление все равно задано. Удобно изображать магнит стрелкой: направлена она так, как только что было сказано, а ее длина условно выражает «силу» магнита. Это, конечно, воображаемая стрелка, но не требуется особенно развитой фантазии, чтобы ее себе представить – ведь два полюса у магнита всегда есть.
Магнит, которым является электрон, тоже определяет направление, хотя там нет ничего похожего на отделенные друг от друга южный и северный магнитные полюса. И «сила» этого магнита всегда фиксирована – она одна и та же для всех электронов во всех условиях, аналогично ситуации с зарядом электрона. Попробовав изображать магнитные свойства электронов стрелками, мы сразу поймем, что стрелки различаются только своими направлениями, а не длиной, раз все магниты одинаковы по силе. Но дальше оказывается, что в случае электрона стрелка приобретает «волшебные» черты. Если сформулировать одной фразой, то «как ни поворачивайся, нельзя посмотреть на нее сбоку». Это, конечно, метафора (уж во всяком случае в отношении слова «посмотреть»), но за ней стоит фундаментально квантовое поведение – буквально квинтэссенция несговорчивости из-за квантовой вражды.
Представьте себе, что вы получаете электрон, по своему усмотрению выбираете направление в пространстве и интересуетесь, под каким углом к этому направлению повернута та самая «магнитная» стрелка этого электрона. Для этого имеется прибор, названный по именам двух ученых, впервые применивших его в 1922 г. (первоначально к ионам серебра), – прибор Штерна – Герлаха. Никакой разговор о спине не может обойтись без прибора Штерна – Герлаха; это не только реально существующее устройство, но и основной фигурант множества рассуждений и мысленных экспериментов, проясняющих структуру квантовых законов.
Задача прибора – сортировать влетающие в него миниатюрные магниты в зависимости от их ориентации. Для этого там создается магнитное поле особой конфигурации, которое отклоняет летящие магниты в зависимости от того, как их «магнитные стрелки» повернуты по отношению к этому магнитному полю. Отклонения фиксируются по следам, которые остаются на специальном экране, стоящем за прибором. Если магнитное поле, созданное в приборе, направлено вдоль вертикали, то будут наблюдаться отклонения вверх или вниз – на любую величину в интервале от максимального вверх до максимального вниз. В частности, вообще никакого отклонения не должно наблюдаться в том случае, когда «магнитная стрелка» ориентирована горизонтально, под углом 90° к направлению магнитного поля в приборе.
Но это если у вас обычные магниты. Электроны же ни в какие промежуточные положения не попадают, они вылетают только с двумя крайними вариантами отклонения. Это значит, что стрелка, выражающая магнитные свойства электронов, смотрит или точно «вперед», или точно «назад» вдоль выбранного направления. Ничего посередине, никаких промежуточных положений не случается.
Неожиданно! Ведь выбор, скажем, вертикального направления в приборе Штерна – Герлаха – произвольное решение. Выберем другое, просто наклонив прибор. Результат получается тот же, что и раньше, но в отношении нового направления: только два крайних отклонения вдоль этого направления, а это значит, что «волшебные стрелки» всех электронов смотрят или строго вдоль него или строго противоположно.
Никто, кстати, не говорит «стрелка» или тем более «волшебная стрелка»: все говорят «спин». Итак: спин электрона всегда направлен или вдоль выбранного направления, или в точности противоположно ему (угол 0° или 180°, и никакой другой). Любого направления.
Кажется, что здесь скрывается противоречие и вроде бы несложно изобрести простую стратегию, чтобы его выявить. Используем, как и ранее, прибор Штерна – Герлаха, измеряющий спин вдоль вертикального направления, и будем посылать в него электроны один за одним. Те, которые отклонились вверх, имеют, значит, спин, направленный вверх. С ними, кажется, все понятно: если не давать им удариться об экран, а отправить во второй, точно такой же, прибор Штерна – Герлаха, то все они продемонстрируют спин вверх. Но теперь положим этот второй прибор на бок – так, чтобы он отклонял пролетающие через него магниты вдоль горизонтального направления, скажем, слева направо. В спине каждого из отобранных электронов нет никакого предпочтения между левым и правым, поскольку угол между вертикальным и горизонтальным направлениями – прямой. А значит, второй прибор не отклонит электроны ни влево, ни вправо?
Ничего подобного. Каждый электрон отклонится одним из двух крайних способов – максимально влево или максимально вправо – сообщая тем самым о своем спиновом состоянии «спин влево» или «спин вправо». Но чем же может определяться выбор?
Ничем. Природа прибегает здесь к спасительной – той самой немотивированной – случайности. Результаты «спин влево» и «спин вправо» чередуются в случайном порядке от одного электрона к другому, а про каждый конкретный электрон нет способа предсказать, какой из двух вариантов получится.
А теперь вспомним про исходное вертикальное направление спина: с ним-то как? Направим электроны из второго прибора Штерна – Герлаха в третий, который снова
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/book/aleksey-semihatov/sto-let-nedoskazannosti-kvantovaya-mehanika-dlya-vseh-v-71369695/?lfrom=174836202&ffile=1) на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
notes
Сноски
1
Здесь и далее цитаты даны в переводе автора.
2
Семихатов А. Всё, что движется: Прогулки по беспокойной Вселенной. От космических орбит до квантовых полей. – М.: Альпина нон-фикшн, 2023, ISBN 978–5–00139–749–6. Я пользуюсь случаем поблагодарить читателей за внимание, вопросы и присланные исправления; на глупую оплошность в формулировке закона Кеплера в первом тираже раньше всех мне указал Сергей Мамон, а небольшую «прогулку по опечаткам» предпринял Яан Партс.
Комментарии
1
Собственно, на квантовую теорию поля как общую схему, а также на Стандартную модель, описывающую все известные поля и их взаимодействия (мы говорим о ней в главе 25). Известно, что Стандартная модель не является полным описанием природы, поэтому расхождение между теоретическим и экспериментальным значениями неудивительно; удивительно, наоборот, что оно столь мало.
2
Имеется несовместимость квантовой механики с теоретическими представлениями о гравитации (на данный момент это общая теория относительности Эйнштейна), но мяч здесь на стороне теории гравитации: в ней нет ничего квантового, и проблема видится в том, чтобы построить квантовую теорию гравитации. По замыслу она должна заменить общую теорию относительности там, где та отказывает (в центре черных дыр, например); на данный момент представляется, что определяющие квантовые принципы останутся при этом в силе. Другой аспект – осознаваемая сейчас необходимость расширения Стандартной модели, в основе которой лежит квантовая теория поля (развитие квантовой механики в согласии со специальной теорией относительности). Под неполнотой Стандартной модели понимают наше незнание о каких-то полях и взаимодействиях, по-видимому имеющихся в природе; речь здесь идет о теории конкретных полей, а не о фундаментальных квантовых основах. Представление о возможных пределах применимости квантовой механики дает, кроме того, возникающий в ряде обсуждений вопрос о ее роли в возникновении Вселенной – что, пожалуй, выходит за границы сколько-нибудь точно установленного современного знания и уж заведомо за границы этой книги.
3
Если нам непременно хочется, чтобы за Демокритом осталось сбывшееся предсказание неделимых частиц в основе мира, то вполне можно решить, что он предсказал электрон, а заодно, может быть, и все кварки и лептоны из Стандартной модели элементарных частиц, а мы в XIX в. просто ошиблись, назвав словом «атом» (т. е. «неделимый») неправильную вещь – составной объект.
4
Заряды противоположных знаков притягиваются друг к другу, поэтому избыток зарядов одного знака, как правило, вызывает приток противоположных, так что в итоге достигается электрическая нейтральность, т. е. полный заряд равный нулю. Здесь, кстати, подразумевается довольно многое, что, возможно, могло бы быть устроено иначе в какой-нибудь другой вселенной: что зарядов «плюс» и «минус» в целом поровну и, более того, что заряды электрона и протона в точности противоположны, несмотря на очень сильно различающееся устройство этих двух носителей; что, да, одноименные отталкиваются, а разноименные притягиваются; и, главное, что электрический заряд сохраняется: нельзя создать положительный заряд, не создав где-то неподалеку отрицательного.
5
Никакие другие силы, действующие между протонами ядра и электронами, не могут обеспечить их совместного проживания. Гравитационное притяжение между ними составляет фантастически малую величину, учет которой никакого смысла не имеет.
6
Уточнения про энергию в квантовой механике последуют в главе 3, а затем мы еще раз вернемся к ее особой роли в главе 9.
7
У слова «квантование» есть и другое значение: построение квантового описания исходя из неквантового. Из того, что встретится далее в этой книге, так говорят, например, о переходе от «обычной» колебательной системы к квантовой или от классического поля к квантовому.
8
В общепринятой терминологии «вражда» – это «некоммутативность эрмитовых операторов в гильбертовом пространстве, соответствующих физическим величинам». Отсюда, пожалуй, сразу видна предпочтительность моего изобретения – слова «вражда» и производных от него.
9
Положение – точка в пространстве, описываемая тремя величинами в какой-нибудь системе координат. Скорость представляет собой вектор, т. е. тоже три величины – длины проекций вектора на три оси координат. Выбрав прямоугольную систему координат с осями x, y, z, мы имеем вражду между соответствующими компонентами: координата вдоль оси x враждует с компонентой скорости вдоль той же оси x, но прекрасно «дружит» с компонентами скорости вдоль оси y и оси z. Аналогично и для других направлений: координата y враждует только с компонентой скорости вдоль оси y, а координата z – только с компонентой скорости вдоль оси z.
10
Общепринятое название – оператор, но мне не хочется перегружать текст новыми словами.
11
По Бору, истинность или ложность высказывания о какой-либо величине, относящейся к квантовому миру, зависит от используемого прибора, поэтому такие высказывания непременно должны включать в себя сведения об устройстве экспериментальной установки и об исходе эксперимента.
12
Степень раскрутки может принимать значения 0, h, h?2, h?2 · 3, h?3 · 4, h?4 · 5 и т. д. За ними стоит математический объект, который только при таких значениях и существует. Частичной (неполной!) визуализацией этого математического объекта являются «электронные облака», которые служат незаменимым подспорьем для целого ряда качественных рассуждений в химии. Никакой электрон, разумеется, облаком не является, а картина облаков никак не отвечает на вопрос, «что делают» электроны в атоме или молекуле; вместо этого она визуализует ответ на вопрос, где чаще, а где реже можно обнаружить электрон при взаимодействии с каким-либо внешним агентом, например высокоэнергетическим гамма-квантом.
13
Здесь требуются два уточнения. Во-первых, у атомов одного элемента имеются изотопы, различающиеся числом нейтронов в атомном ядре. Само по себе это важно, но для нас сейчас интересно в минимальной степени. Во-вторых, и это существенно, атомы одного элемента одинаковы по своей электронной структуре в одних и тех же условиях. Помещение атома в магнитное поле вызывает сдвиг «энергетических ступенек» для его электронов, причем величина сдвига зависит от того, какие атрибуты вращения взяли себе эти электроны. В результате интервалы между различными ступеньками изменяются, а потому изменяются длины волн, которые атом может поглощать и излучать. Это дает потрясающий метод измерения характеристик магнитного поля на расстоянии, начиная от магнитного поля Солнца и много дальше в космосе.
14
По поводу единственности способа сборки простых молекул также имеется важное уточнение, касающееся изомерии. В ряде случаев есть несколько вариантов сборки – например, два варианта могут быть зеркальным отражением друг друга. Такая и даже более богатая вариативность играет свою роль в химии (и в том числе в химии живого), но при этом неизменным остается тот факт, что различные варианты дискретны: между ними нет плавных переходов.
15
Дискретность колебаний атомов в молекуле также определяет длины волн света, испускаемого и поглощаемого молекулами. Молекулярные спектры сложнее атомных. В них видны и электронные линии (отражающие, как и в атоме, перескоки электронов между своими энергетическими ступеньками), и собственно колебательные линии, группирующиеся в полосы вблизи каждой электронной линии; имеется, кроме того, и еще более тонкая вращательная структура, определяемая дискретными значениями, которые принимают «атрибуты вращения». Наблюдение всех подробностей требует тут более высокого разрешения, чем в случае атомных спектров. Именно по молекулярным спектрам – научившись преодолевать значительные практические сложности – мы, например, ищем биомаркеры в атмосферах экзопланет.
16
Примеры двухатомных молекул – фтороводород (при растворении в воде становится плавиковой кислотой), хлороводород (при растворении в воде становится соляной кислотой), угарный газ и окись азота.
Все книги на сайте предоставены для ознакомления и защищены авторским правом