ISBN :9785002234356
Возрастное ограничение : 999
Дата обновления : 12.11.2025
17
Шаг между значениями, которые может принимать энергия колебаний, определяется тем, что в классическом мире было бы частотой колебаний: если бы квантовые правила перестали действовать, мы могли бы говорить о том, как часто колебательная система такого сорта возвращается к одному и тому же положению. Чем больше эта частота, тем шире расположены энергетические ступеньки в квантовой колебательной системе.
18
Точный смысл, в каком понимается такая неопределенность, – не самый простой вопрос. Можно думать о среднем (квадратичном) отклонении при многократно повторяемых измерениях, проводимых над одинаково приготовленными системами.
19
Как уже отмечалось, связаны между собой неопределенности вдоль одного и того же направления: неопределенность положения вдоль x обратно пропорциональна неопределенности скорости вдоль того же направления x, и аналогично для направлений y и z в прямоугольной системе координат.
20
Это не самое точное и не самое лучшее пояснение к механизму туннелирования, но точное объяснение потребовало бы нескольких понятий, с которыми мы знакомимся только в последующих главах, да и то вместе с неожиданно длинным списком математических фактов.
21
Иногда уточняют, что это так называемое остаточное сильное взаимодействие: оно действует между протонами и нейтронами, которые сами являются составными объектами, сложенными каждый из трех кварков. Собственно сильное взаимодействие занимается тем, что неразрывно связывает эти тройки кварков путем обмена промежуточными агентами, называемыми глюонами. Протоны и нейтроны связаны друг с другом тоже благодаря сильному ядерному взаимодействию, но агентами, переносящими взаимодействие между ними, работают пи-мезоны, каждый из которых сложен из кварка и антикварка.
22
Туннелирование электрона из атома в довольно специальных условиях, созданных электромагнитным полем проходящего лазерного импульса, – ключевой (хотя и не единственный) элемент в схеме генерации импульсов сверхмалой, аттосекундной продолжительности; это тема Нобелевской премии по физике 2023 г.
23
После того как два протона сблизились благодаря туннелированию, дальнейший синтез альфа-частицы еще не гарантирован: он, в свою очередь, управляется квантовыми вероятностями в совсем другом процессе – превращения протона в нейтрон благодаря слабому ядерному взаимодействию. Как бы то ни было, все эти вероятности, вместе взятые, обеспечивают неспешное горение Солнца.
24
В разных других интервалах длин волн лежат (от длинных к коротким) радиоволны, волны в вашей микроволновке, терагерцевые (субмиллиметровые) волны, за которыми идет уже упоминавшееся инфракрасное излучение и видимый свет, а далее ультрафиолет, рентгеновские лучи и жесткое гамма-излучение.
25
При каждой температуре есть длина волны, на которой нагретое до данной температуры тело излучает наиболее интенсивно, тогда как для более коротких и более длинных волн интенсивность заметно спадает. Закон излучения описывает это численно. Речь в этом законе идет об «абсолютно черном теле». Этот термин может ввести в заблуждение: он означает тело, которое ничего не отражает, а только излучает свет, причем по той единственной причине, что оно, тело, имеет определенную температуру; (абсолютно) черным оно является только при абсолютном нуле. Солнце – неплохой пример «абсолютно черного тела».
26
Квантование света – сколь бы экстраординарной ни выглядела эта идея в 1905 г. – объясняло странный факт: свет с большей длиной волны не выбивает электроны из материала, даже если этот свет очень яркий, т. е. совокупно доставляет к поверхности много энергии. Дело оказалось в том, что если каждый выбиваемый из материала электрон получает необходимую для этого энергию только от одного фотона, то пока энергии фотонов малы – свет длинноволновый, – электроны попросту не получают достаточной энергии, чтобы вырваться наружу, и остаются внутри материала. Увеличение яркости света не меняет ситуации, пока длина волны та же: неважно, сколько фотонов падает на поверхность, если ни один не может передать электрону нужной энергии. А вот при уменьшении длины волны картина меняется: каждый фотон несет больше энергии, получая которую электрон вылетает наружу, причем со все большей энергией по мере дальнейшего уменьшения длины волны.
27
Еще один «квантовый шаг» в том же 1913 г. сделал Бор, распространив идеи дискретности на модель атома. Модель сводилась к постулатам о том, какие орбиты «разрешены» для электрона в атоме, все еще представляемом как подобие планетной системы. При этом понятие «разрешены» получало довольно искусственное обоснование. Модель работала для простейшего атома – водорода; она показала, что необходимо мыслить неординарно, но не годилась ни для одного более сложного атома. Последовавшая затем Первая мировая война затруднила обмен идеями (и не только его), и развитие квантовой теории возобновилось уже в 1920-е гг.
28
Нобелевскую премию 1964 г. «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера-лазера» получили Басов, Прохоров и Таунс.
29
Из теоретических соображений Эйнштейн сознавал, что фотоны не могли быть в полной мере статистически независимы друг от друга, как молекулы в обычном (классическом) газе. Бозе точно выразил такую зависимость в своей статье, которую, однако, не приняли к публикации в журнале, поэтому Бозе прислал ее Эйнштейну для возможной публикации в другом издании после перевода на немецкий, если она окажется заслуживающей внимания. Эйнштейн оценил идею, перевел статью на немецкий и отправил в журнал с короткой припиской от себя, а тем временем понял, что идея приложима шире, не только к фотонам, но и к собранию одинаковых частиц любой массы, главное статистическое свойство которых – принципиальная неразличимость вместе с некоторой склонностью к «коллективизму» (сейчас это описывается как принадлежность к классу бозонов). До того считалось, что хотя атомы любого газа одинаковы, они в принципе различимы, но в новой схеме нет возможности даже говорить о том, какая из двух частиц полетела налево, а какая направо; из-за этого имеется меньше способов организовать картину «одна слева, другая справа», и таким образом нарушается привычная статистическая независимость, когда каждая частица вносит вклад в разнообразие возможностей независимо от всех остальных. Это влекло за собой теоретические последствия, включая более последовательный вывод закона Планка (собственно, результат Бозе) и выражения для теплоемкости твердых тел, а также идею о «конденсате», высказанную Эйнштейном в статье, вышедшей уже в 1925 г.
30
Бор, по-видимому, желал развить – и применять сначала в квантовой теории, а затем по возможности повсеместно – «принцип дополнительности». О нем сейчас еще можно услышать от физиков, но философы едва ли рассматривают его как сколько-нибудь серьезную идею.
31
Быть может, стоит прокомментировать потерю наглядности, начав с электрона в атоме. Он не движется там по какой бы то ни было траектории (и вообще не находится в определенной точке пространства ни в какой момент времени), но интуитивно трудно отделаться от ощущения, что он все-таки «как-то там вращается». В действительности же наглядной картины нет, ее заменяют те самые два «атрибута вращения»; вместе с уровнем энергии они и описывают, «как устраиваются» электроны в атомах. Сейчас же обсуждаются атрибуты вращения, которые относятся к электрону самому по себе – прикреплены к нему постоянно и неотъемлемо, вне всякой связи с атомом. Для них наглядной картины, разумеется, нет, но ведь ее не было и в отношении атрибутов вращения электрона в атоме: ответа на вопрос «как и что вращается», если иметь в виду наглядную картину вращения, не предполагается ни в том, ни в другом случае. Квантовая механика не требует никаких подробностей, если выполняются формальные соотношения.
Все книги на сайте предоставены для ознакомления и защищены авторским правом