Жак Виллен "Физика повседневности. От мыльных пузырей до квантовых технологий"

grade 4,3 - Рейтинг книги по мнению 30+ читателей Рунета

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

date_range Год издания :

foundation Издательство :Альпина Диджитал

person Автор :

workspaces ISBN :978-5-0013-9340-5

child_care Возрастное ограничение : 16

update Дата обновления : 14.06.2023


) + k (z – z

)

, где k – константа. В этом случае кривая, иллюстрирующая изменение скорости звука в зависимости от глубины (зеленая на илл. 5 и 6), является параболой. На самом деле это приближение почти всегда справедливо для глубин z, близких к z

. Звуковой луч, немного отклоняющийся от горизонтали, следует по синусоиде, период которой не зависит от угла падения, так что все звуковые лучи в одной вертикальной плоскости сходятся в точках оси z = z

(илл. 7). Эти точки аналогичны фокусам оптических приборов, таких как линзы, в которых сходятся падающие световые лучи, поэтому наблюдается явление фокусировки звуковых волн. Параболическая форма кривой хорошо описывает изменение скорости звука в зависимости от частоты в глубинах океана. Однако, поскольку кривая c (z) на практике не является параболой, то фокусировка звука не идеальна.

Заключение

Когда звук излучается на соответствующей глубине в море, значительная часть звуковой энергии оказывается заперта в «акустических каналах». Достаточное ли это объяснение для прохождения звука от Австралии до Бермудских островов? Попробуем подсчитать. Хотя рассмотренный нами механизм описывает именно распространение звука в океане, остаются возможными еще два направления. Звуковая волна, излучаемая в середине океана, проходит в течение времени t расстояние R порядка с

t, где с

 – средняя скорость звука в воде, скажем, 1500 м/с. Даже если предполагается, что потери равны нулю, энергия звуковой волны должна распределяться по всей, примерно цилиндрической, поверхности зоны 2?Rh, где разница в глубине h между верхней и нижней границами канала может достигать глубины океана. Таким образом, интенсивность звука уменьшается как 1/R по мере удаления от источника. Это происходит не так резко, как затухание, пропорциональное 1/R

звука в воздухе (илл. 3), но и оно едва ли оставляет надежду на то, что звук, раздавшийся в Австралии, будет услышан на Бермудах. Однако если приемник звука находился в точке фокуса, где сходятся звуковые лучи (илл. 7), а величина h невелика, то в принципе отголосок взрыва мог быть услышан. Кроме того, можно допустить, что колебания солености и температуры в толще океана на пути звуковых лучей создают и вертикальные отражающие стенки, препятствующие рассеянию энергии звуковой волны. И все же удивительно, что звук достигает Бермудских островов в обход мыса Доброй Надежды, учитывая дополнительное поглощение энергии, например, пузырьками воздуха или планктоном.

7. Явление фокусировки звуковых лучей

8. Пример миража в Ливийской пустыне. По мере приближения к раскаленному песку солнечные лучи встречают все более горячий воздух (и, следовательно, среду с уменьшающимся показателем преломления): таким образом, они, как и звуковые лучи на илл. 7, все сильнее отклоняются вплоть до отражения. Наблюдателю кажется, что в продолжении этих отраженных лучей он видит воду

Распространение звука в естественных подводных каналах – не единственный случай волновода, созданного природой. Еще несколько примеров связаны со спецификой распространения электромагнитных волн. Наиболее эффектны миражи, которые возникают из-за непрямолинейного распространения света в очень неравномерно нагретой атмосфере (илл. 8). Кроме того, можно вспомнить короткие радиоволны, которые распространяются на большие расстояния благодаря отражению в ионосфере – верхней области атмосферы на высоте от 60 до 800 км. При определенных условиях радиоприемник может принимать радиопередачи из других стран.

Глава 3

Цвета моря и неба

Когда стоит хорошая погода, днем небо голубое, а в сумерках – алое. Через несколько часов опускается ночная тьма, и на черном небе вспыхивают мириады звезд. Днем облака белые или сероватые. В дождливую погоду иногда появляется радуга… Какие физические принципы объясняют все эти цвета? Ответ вы найдете в этой главе. И поскольку речь идет о небесах, мы поговорим и об их крылатых обитателях– птицах и насекомых.

Море и небо дарят нам разнообразные цвета, вдохновившие многих художников. Аркадий Рылов воспроизвел эти цвета на картине, выставленной в Третьяковской галерее в Москве (илл. 1). Белые хмурые облака плывут по небу всех оттенков синего. Поверхность моря более темная, подошвы волн – почти черные, а гребни местами образуют белые «барашки».

Цвет моря и сила ветра

Количество «барашков» и высота волн зависят от скорости ветра. Эта информация имеет важное значение для моряков: для определения скорости ветра они пользуются эмпирической таблицей, которую разработал британский адмирал сэр Фрэнсис Бофорт (1774–1857) (см. главу 2). На картине Рылова наличие небольшого количества «барашков» свидетельствует о ветре 12–19 км/ч, то есть 7–10 морских узлов. Такой ветер считается слабым и соответствует силе в 3 балла по шкале Бофорта.

1. «В голубом просторе», картина художника-символиста Аркадия Рылова (1870–1939)

Шкала Бофорта

Представление о скорости ветра можно получить не только с помощью шкалы Бофорта, но и по контрасту между яркостью моря и неба. Они одинаковы, когда на море штиль, а горизонт едва различим. Как правило, легчайшего ветра достаточно, чтобы встревожить поверхность воды и создать контраст: небо ярче моря, горизонт выглядит как четкая линия. Это явление было изучено несколько десятилетий назад российскими учеными на борту исследовательского судна «Дмитрий Менделеев»

Яркость морской поверхности зависит от угла наблюдения. Действительно, луч света, падающий на поверхность моря, как частично преломляется, так и частично отражается (см. главу 2, «Отражение и преломление световых волн»). Интенсивность отраженного луча зависит, в частности, от показателя преломления воды и угла падения. Чем острее угол, тем сильнее отражение. Поэтому поверхность моря кажется более яркой у горизонта, чем вблизи наблюдателя.

А что насчет его цвета? Цвет поверхности практически непредсказуем, так как зависит от многих факторов, таких как глубина моря, положение солнца, цвет неба, наличие взвешенных частиц и водорослей и т. д. Все эти факторы влияют на отражение света от поверхности, его рассеяние и поглощение в воде. И все же море чаще всего синее. Причина в том, что вода поглощает меньше света в диапазоне между 400 и 500 нм (синего), чем в остальной части видимого спектра (см. ниже). Да, вода поглощает мало синего! Стакан воды выглядит совершенно прозрачным. Но начиная с толщины в несколько метров вода начинает заметно поглощать свет.

Цветовое зрение

Различные области электромагнитного излучения и их применение. Узкая область между 400 и 800 нм (то есть на частотах между 800 и 400 ТГц) соответствует видимому спектру. Каждое излучение, или «спектральный цвет», обладает своей длиной волны ?, которая связана с частотой ? отношением ? = c/?, где c – скорость света в вакууме

Человеческий глаз чувствителен к электромагнитному излучению волн длиной от 400 до 800 нм (см. илл.). Объекты кажутся цветными, либо когда они излучают свет, будучи достаточно нагретыми (как кусок раскаленного железа), либо когда они освещены и «рассеивают» (иными словами, возвращают) часть полученного света извне. Свет, попадающий в глаза, обычно полихроматичен, то есть содержит излучения с различными длинами волны в разных пропорциях. Эта композиция и определяет воспринимаемый нами цвет. Таким образом, объект, поглощающий все световое излучение, кажется черным; объект, излучающий электромагнитное излучение всех длин волн от 400 до 800 нм с сопоставимой интенсивностью, выглядит белым.

В глазу цветовое восприятие обеспечивается клетками, называемыми колбочками, которые выстилают заднюю поверхность сетчатки. Существует три типа колбочек (см. илл.), передающих сигналы в мозг, который интерпретирует их и получает визуальное ощущение цвета. Воспринимаемые цвета не ограничиваются цветами радуги или «спектральными цветами», которые возникают вследствие разложения белого света. Пурпурный, например, получается путем объединения красного (около 680 нм) и синего (около 480 нм) света. Кроме того, один и тот же воспринимаемый цвет может соответствовать свету самых разных композиций. Например, объект может казаться желтым, когда он излучает монохроматический свет длиной волны около 580 нм, или излучает свет видимого диапазона, лишенный своей сине-фиолетовой части, или даже комбинацию красного и зеленого светов.

Чувствительность трех типов колбочек в зависимости от длины волны

Цвет неба в хорошую погоду

В то время как предсказать цвет моря непросто, цвет неба в хорошую погоду легко объясняется физическими принципами, выявленными английским физиком лордом Рэйли (Рэлеем) (1842–1919). В отсутствие облаков цвет неба определяется результатом взаимодействия солнечного излучения с компонентами атмосферы Земли, а именно с неоднородностями (флуктуациями) плотности молекул азота и кислорода.

Как эти молекулы ведут себя, попав в поле солнечного излучения? Рассмотрим монохроматический свет, обладающий заданной длиной волны ?. Он представляет собой колеблющиеся в плоскостях, перпендикулярных направлению распространения света, с частотой ? магнитное и электрическое поля. Под действием колеблющегося электрического поля электроны в молекулах также колеблются с частотой ?. В результате и сама молекула становится маленьким излучателем, испуская свет той же частоты, что и падающая волна. Это похоже на то, как излучает электромагнитные радиоволны теле- или радиоантенна. В случае молекул и солнечного света длина его волны оказывается много большей размера молекул, и такое рассеяние называется «рассеянием Рэлея». Расчеты показывают, что интенсивность рассеянного света оказывается пропорциональной четвертой степени частоты ?

(или 1/?

). Это утверждение называется законом Рэлея – Джинса (илл. 2).

2. Рассеяние света молекулами и закон Рэлея. Под воздействием падающего монохроматического света (a) молекулы переизлучают свет той же длины волны во всех направлениях. Синему цвету соответствует длина волны около 450 нм, а красному – около 650 нм. (b) Согласно закону Рэлея, четвертая степень отношения 650/450 равна 4,3, то есть интенсивность рассеяния синего примерно в 4 раза выше, чем красного

Как все это связано с цветом неба? Согласно закону Рэлея, рассеяние электромагнитных волн оказывается значительно интенсивнее для высоких частот по сравнению с низкими. Это означает, что молекулы атмосферы сильнее рассеивают синий цвет, чем красный, зеленый или желтый. Таким образом, наших глаз преимущественно достигают именно световые лучи синего цвета. Вот почему небо синее! Следуя этому рассуждению, можно было бы предположить, что небо должно быть фиолетовым, так как фиолетовое излучение обладает более высокой частотой, чем синее. В действительности в спектре солнечного излучения доля фиолетового меньше, чем синего. Кроме того, и максимальная чувствительность человеческого глаза находится в области зеленого (555 нм). В результате фиолетовая часть спектра солнечного излучения оказывается подавленной в восприятии человеческого глаза, и небо видится синим (см. главу 3, «Цветовое зрение»).

3. a. Днем чистое небо кажется синим, так как молекулы атмосферы сильно рассеивают синюю компоненту солнечного излучения.

b. На закате доходящий до нас солнечный свет преодолевает гораздо более толстый слой атмосферы, и небо пламенеет

Небо на закате… и после

На закате небо над горизонтом принимает красивый розовый оттенок (илл. 3). Этот цвет также обусловлен рассеянием солнечного света в атмосфере. Поскольку свет распространяется во всех направлениях, то до нас доходит лишь его часть, а остальное возвращается в пространство. Часть солнечной энергии, возвращающаяся за пределы земной атмосферы, невелика, однако для некоторых явлений она может оказаться существенной (илл. 4). В видимом излучении разница между энергией, получаемой поверхностью земли и верхними слоями атмосферы, обусловлена прежде всего рассеянием. Так, мы видим, что в дневное время энергия, получаемая на земле, меньше падающей на верхние слои атмосферы примерно на 25 % в синем и на 10 % – в красном диапазонах. На закате эти пропорции изменяются, поскольку свету приходится преодолевать гораздо большую толщу атмосферы (илл. 5). Таким образом, синий свет почти целиком рассеивается, и наблюдатель на земле видит в основном красный.

Как только солнце исчезает за горизонтом, постепенно наступает ночь. Цвет неба в ночное время – совсем иной вопрос (см. главу 3, «Тайны безлунной ночи»).

Цвет облаков

Как можно увидеть на картине Рылова (см. илл. 1 в главе 3), облака бывают белые, серые или черноватые, в зависимости от их толщины и места, откуда их наблюдают. В любом случае они непрозрачны: солнце не видно сквозь облака, а солнечный свет оказывается более или менее интенсивным в зависимости от их толщины. Он доходит до нас, рассеянный каплями воды, из которых состоит облако. Такое рассеяние намного более интенсивно, чем рассеяние на флуктуациях плотности молекул кислорода и азота, которое мы описали выше. Почему?

4. Световая энергия, получаемая верхними слоями атмосферы (желтый) и на уровне моря (красный) в дневное время с учетом рассеяния и поглощения. Отметки «H

O» и «O

» обозначают диапазон поглощения воды и кислорода соответственно. Энергия, отложенная по оси ординат, выражается в ваттах на кв. м поверхности, в то время как длины волн на оси абсцисс измеряются в нанометрах

Причина в том, что большие объекты рассеивают свет намного сильнее, чем маленькие. Например, если капля воды содержит миллион молекул (и имеет диаметр около 0,04 мкм), она рассеивает свет почти в миллион миллионов раз интенсивнее, чем миллион отдельных молекул! Получается, что если в капле миллиард молекул, то она рассеивает свет в миллиард миллиардов раз больше, чем такое же число изолированных молекул? Нет! Диаметр этой капли составляет порядка 0,4 мкм – величина существенная по сравнению с длиной волны видимого света. Закон «голубого неба» Рэлея в этом случае неприменим, поскольку переизлучение света каждой из молекул воды, находящейся в капле, случайно по фазе. Последнее обстоятельство приводит к ослабляющей интерференции этих вторичных волн – явлению, о котором мы поговорим чуть позже. Расчет интенсивности рассеяния электромагнитного излучения на сфере произвольного радиуса R был впервые выполнен немецким физиком Густавом Ми в 1908 году. Точный результат представляется бесконечной суммой слагаемых. Для небольшой капли (R << ?) в этой сумме можно сохранить лишь первое слагаемое, которое и соответствует рассеянию Рэлея. Чем больше капля, тем больше количество слагаемых, которые следует учитывать. При R >> ? расчет упрощается: в этом случае применяется геометрическая оптика. Согласно очевидным геометрическим соображениям, количество энергии света, падающей на сферу, пропорционально ее сечению, то есть R

. Таким образом, на большую каплю падает больше энергии, чем на меньшую; в меру квадрата своего радиуса она больше света и переизлучает. Кроме того, оказывается, что общая интенсивность света, рассеиваемого большой каплей, не зависит от длины падающей волны. Именно это и объясняет тот факт, что при падении на систему капель белого света и рассеянный свет также оказывается белым. Итак, облака белые, потому что белым является освещающий их солнечный свет!

Все книги на сайте предоставены для ознакомления и защищены авторским правом