Джеймс Глик "Хаос. Создание новой науки"

grade 4,3 - Рейтинг книги по мнению 210+ читателей Рунета

«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию. В формате PDF A4 сохранен издательский макет.

date_range Год издания :

foundation Издательство :Corpus (АСТ)

person Автор :

workspaces ISBN :978-5-17-116057-9

child_care Возрастное ограничение : 12

update Дата обновления : 14.06.2023

Пятидесятые и шестидесятые годы XX века стали временем неоправданного оптимизма по поводу возможностей предсказания погоды[27 - Вудс, Шнейдер; см. также большой обзор экспертных мнений того времени: «Weather Scientists Optimistic That New Findings Are Near» // The New York Times. 9 September. P. 1.]. Газеты и журналы наперебой твердили о надеждах, возлагаемых на новую науку – даже не столько на прогнозирование, сколько на изменение погодных условий и управление ими. Развивались сразу две технические новации: цифровые компьютеры и искусственные спутники Земли, и оба новшества использовались в международном проекте, названном Глобальной программой исследования атмосферы. Говорили даже, что человечество освободится от произвола стихий, став повелителем, а не жертвой атмосферы. Кукурузные поля накроют геодезическими куполами, небосклон очистят от туч самолетами, ученым станет ясен механизм запуска и остановки дождя.

Эти иллюзии были посеяны Нейманом, создавшим свой первый компьютер с твердым намерением использовать вычислительную машину и для управления погодой. Он окружил себя метеорологами и захватывающе рассказал о своих планах коллегам-физикам. У Неймана были особые математические причины для оптимизма. Он полагал, что сложная динамическая система имеет точки неустойчивости – критические точки, в которых слабый толчок может привести к огромным последствиям, как это происходит с мячиком, балансирующим на вершине холма. Нейман верил, что с помощью компьютера ученые смогут рассчитать уравнение движения жидкости и предсказать погоду на следующие несколько дней[28 - Дайсон.]. После этого, если центральный комитет метеорологов сочтет нужным ее изменить, в небо поднимутся самолеты, чтобы оставить за собой дымовую завесу или разогнать облака. Великолепная перспектива! Однако Нейман не учел вероятность хаоса, при котором неустойчива каждая точка.

К 1980-м годам разветвленный и дорогостоящий аппарат служащих рьяно взялся выполнять поставленную Нейманом задачу, по крайней мере ту ее часть, которая была связана с составлением прогнозов[29 - Боннер, Бенгтссон, Вудс, Лейт.]. На окраине одного из городов штата Мэриленд, близ Вашингтонской кольцевой автострады, в простом, похожем на куб здании, которое обилием радиоантенн и радаров, установленных на крыше, напоминало разведцентр, трудились ведущие ученые Америки. Здесь мощнейший суперкомпьютер производил моделирование, напоминавшее разработки Лоренца, но лишь по сути и духу. Royal МсВее мог выполнять шестьдесят умножений в секунду, тогда как быстродействие новой машины ControlDataCyber 205 составляло миллионы операций с плавающей запятой в секунду. Там, где Лоренц использовал двенадцать уравнений, современный компьютер расправлялся с системой, состоявшей из пятисот тысяч уравнений. Этой машине был известен механизм колебаний температуры воздуха при конденсации и испарении жидкости. Виртуальные воздушные потоки зарождались в компьютерных горных цепях. Информация, поступавшая со всего земного шара, со спутников, самолетов и кораблей, вводилась в компьютер ежечасно. В результате по точности прогнозов Национальный метеорологический центр США занял второе место в мире.

А первое место занял Европейский центр среднесрочных прогнозов погоды, расположенный в английском Рединге, небольшом университетском городке в часе езды от Лондона. Скромное современное здание из стекла и кирпича, затененное деревьями, построили в годы торжества идеи общего рынка, когда большинство государств Западной Европы решили действовать сообща, объединив интеллектуальные и денежные ресурсы для предсказания погоды. Европейцы приписывали свои успехи молодости сменяющих друг друга сотрудников, которые не состояли на государственной службе, и суперкомпьютеру Cray, который был на порядок совершеннее американского аналога.

Прогнозирование погоды стало отправной точкой, с которой началось применение компьютеров для моделирования сложных систем. Использованная методика сослужила хорошую службу множеству представителей естественных, точных и гуманитарных наук. С ее помощью ученые пытались предугадать буквально все, начиная с динамики маломасштабных жидкостных потоков, изучаемых конструкторами двигателей, и заканчивая денежными потоками, изучаемыми экономистами. В самом деле, к 1970-1980-м годам компьютерные прогнозы экономического развития напоминали глобальные предсказания погоды. Модели, представлявшие собой хитросплетенную, до некоторой степени произвольную паутину уравнений, преобразовывали известные начальные условия – будь то атмосферное давление или денежную массу – в будущие тенденции. Программисты надеялись, что неизбежные упрощающие предположения не слишком сильно искажают истину. Если на выходе получалось нечто странное – наводнение в Сахаре или повышение процентных ставок на несколько порядков, – уравнение подправляли таким образом, чтобы подогнать результат под ожидаемый. Как это ни печально, эконометрические модели мало соответствовали реальности, но это не мешало многим людям, которым следовало бы лучше понимать, что к чему, вести себя так, будто они верили в итоги изысканий. Прогнозы экономического роста и безработицы составлялись с точностью до сотых, а то и тысячных долей[30 - Medawar R В. «Expectation and Prediction» // Pluto's Republic. Oxford: Oxford University Press, R 301–304.]. Правительства и финансовые институты субсидировали прогнозирование и действовали в соответствии с ним – зачастую в силу необходимости, а иногда просто желая получить лучший результат. Возможно, они все же знали, что показатели вроде «потребительского оптимизма» не столь хорошо поддаются измерению, как, например, влажность воздуха, и что дифференциальных уравнений, идеально отражающих политические движения или изменения в мире моды, еще никто не создал. Но лишь немногие осознавали, сколь ненадежен был сам процесс компьютерного моделирования, даже в тех случаях, когда исходным данным вполне можно доверять, а законы заимствованы из физики, как в случае с предсказанием погоды.

Истинный успех компьютерного моделирования состоит в том, что составление прогнозов погоды из искусства превратилось в науку. По оценкам Европейского центра, мировая экономика ежегодно сберегала миллиарды долларов благодаря предсказаниям, которые статистически были лучше, чем ничего. Однако прогнозы, составленные более чем на два-три дня, оказывались крайне умозрительными, а более чем на неделю – просто бесполезными.

Причина заключалась в эффекте бабочки[31 - Изначально Лоренц использовал для описания эффекта образ чайки, а тот образ, который используется сейчас, по-видимому, позаимствован из его работы «Predictability: Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?» и связан с выступлением на ежегодном собрании Американской ассоциации содействия развитию науки в Вашингтоне 29 декабря 1979 года.]. Стоит возникнуть незначительному и кратковременному погодному явлению – а для глобального прогноза таковыми могут считаться и грозовые штормы, и снежные бури, – как предсказание утрачивает актуальность. Погрешности и случайности множатся, каскадом накладываясь на турбулентные зоны атмосферы, начиная от пылевых вихрей и шквалов и заканчивая воздушными токами в масштабах целого материка, отслеживать которые удается лишь из космоса.

Современное моделирование погоды работает с сетками точек, отстоящих друг от друга на шестьдесят миль. Тем не менее о некоторых начальных данных приходится лишь догадываться, поскольку наземные станции и спутники не вездесущи. Предположим, что поверхность земного шара усеяна датчиками, удаленными друг от друга лишь на фут, и они контролируют атмосферу по всей высоте[32 - Йорк.]. Допустим, каждый датчик передает исключительно точную информацию о температуре, давлении, влажности и любой другой нужной метеорологу величине. Точно в полдень компьютер огромной мощности считывает все данные и вычисляет, что случится в каждой из точек в 12:01, в 12:02, в 12:03 и так далее.

И все же компьютер не сможет предсказать, солнечная или дождливая погода ожидается в Принстоне через месяц. В полдень небольшие отклонения температуры от среднего значения в пространстве между датчиками будут недоступны компьютеру. К 12:01 эти отклонения повлекут за собой небольшие погрешности, которые со временем станут нарастать и выльются в огромные ошибки.

Но даже опытные метеорологи не догадывались об этом. Одним из близких друзей Лоренца был Роберт Уайт, исследователь-метеоролог из Массачусетского технологического института. Когда Лоренц рассказал Уайту об эффекте бабочки и о том, какое значение он может иметь для долгосрочного прогнозирования атмосферных явлений, Уайт ответил словами Неймана:

«Дело не в предсказании, а в управлении»[33 - Лоренц, Уайт.]. Его мысль заключалась в том, что небольшие изменения под контролем человека могут вызвать желаемые крупномасштабные перемены.

Но Лоренц смотрел на это по-другому. Да, мы можем изменить погоду, мы можем заставить атмосферу вести себя иначе, не так, как она вела бы себя без нашего вмешательства. Но мы никогда не узнаем, что происходило бы, если бы мы этого не сделали. Это все равно что заново тасовать уже хорошо перетасованную колоду карт. Нам ясно, что это изменит ситуацию, но неизвестно – к лучшему или к худшему.

Открытие Лоренца было случайным – звено в цепи неожиданных прозрений, восходящей еще к Архимеду с его ванной. Но Лоренц не принадлежал к числу тех, кто торопится кричать: «Эврика!» Руководимый инстинктивной прозорливостью, он приготовился идти дальше тем же путем и изучать последствия своего открытия, чтобы выяснить его роль в образовании потоков во всех видах жидкости.

Остановись Лоренц на эффекте бабочки, этом символе торжества случая над предопределенностью, в его распоряжении не оказалось бы ничего, кроме плохих новостей. Но Лоренц в своей модели погоды видел нечто большее, чем просто встроенную в нее хаотичность, – там наблюдалась изящная геометрическая структура, некий порядок, выдающий себя за случайность. Лоренц, будучи математиком по призванию и метеорологом по профессии, начал в конце концов вести двойную жизнь. Помимо работ по метеорологии из-под его пера выходили статьи, где несколько вступительных строк о теории атмосферных процессов растворялись в математическом тексте.

Он уделял все больше и больше внимания математике систем, не имевших устойчивого состояния; систем, которые почти повторяли сами себя, но делали это не абсолютно точно. Известно, что погода как раз и является такой апериодичной системой. Мир полон подобных систем, и не нужно далеко ходить за примерами: численность популяций животных то растет, то падает, делая это почти периодически, и аналогично, вопреки людским надеждам, вспыхивают и затухают эпидемии. И если бы погода когда-нибудь повторилась с точностью до облака и порыва ветра, тогда, вероятно, она стала бы повторяться и дальше – и проблема прогнозирования потеряла бы актуальность.

Лоренц чувствовал, что должна существовать связь между неповторяемостью атмосферных явлений и неспособностью метеорологов предсказать их – иными словами, связь между апериодичностью и непредсказуемостью[34 - «The Mechanics of Vacillation».]. Найти простые уравнения для апериодичности было делом нелегким – поначалу компьютер воспроизводил идеально повторяющиеся циклы – однако после череды небольших усложнений своей модели Лоренц все же достиг успеха. Это произошло, когда он ввел в машину уравнение, описывающее изменение количества тепла при движении с востока на запад, соответствующее реальной разнице в том, как солнце нагревает восточное побережье Северной Америки и Атлантический океан. В результате повторяющиеся циклы исчезли.

Эффект бабочки был не случайностью, но необходимостью. Допустим, небольшие возмущения так и остаются небольшими, не нарастая в системе, рассуждал ученый. Приближаясь к ранее пройденному состоянию, погода будет повторяться и в дальнейшем. Циклы станут предсказуемыми и в конце концов потеряют все свое очарование. Чтобы воспроизвести богатый спектр реальной погоды земного шара, ее чудесное многообразие, вряд ли можно желать чего-либо лучшего, чем эффект бабочки.

Как уже говорилось, данный феномен имеет и строгое научное название: «сильная зависимость от начальных условий». Эта зависимость не была абсолютной новостью, например, ее превосходно иллюстрирует детский стишок[35 - Перевод С. Я. Маршака.]:

Не было гвоздя – подкова пропала,
Не было подковы – лошадь захромала,
Лошадь захромала – командир убит,
Конница разбита, армия бежит,

Враг вступает в город, пленных не щадя,

Оттого что в кузнице не было гвоздя[36 - Джордж Херберт; в этом контексте цит. по: Wiener N. «Nonlinear Prediction and Dynamics» // Collected Works with Commentaries / Ed. by R Masani. Cambridge, Mass.: The M. I. T. Press, R 3:Винер не был согласен с Лоренцем как минимум в признании наличия «самостоятельных колебаний незначительных деталей на погодной карте». Он отмечал: «Торнадо – в высшей степени локальный феномен, и его точный путь могут определять мелочи, не влияющие глобально больше ни на что».].

Как наука, так и жизнь учит, что цепь событий может иметь критическую точку, в которой небольшие изменения приобретают особую значимость. Суть хаоса в том, что такие точки находятся везде и распространяются повсюду. В системах, подобных погоде, сильная зависимость от начальных условий представляет собой неизбежное следствие взаимодействия процессов, происходящих на разных масштабах.

Коллеги Лоренца были изумлены тем, как он соединил апериодичность и сильную зависимость от начальных условий в своей миниатюрной модели погоды. Всего двенадцать уравнений, раз за разом просчитываемые с механической точностью! Как может подобное многообразие, такая непредсказуемость – в чистом виде хаос! – возникнуть из простой детерминистской системы?

Отложив на время занятия погодой, Лоренц стал искать более простые способы воспроизвести сложное поведение объектов. Один из них был найден в виде системы из трех нелинейных, то есть выражающих не прямую пропорциональную зависимость, уравнений. Линейные соотношения изображаются на графике прямой линией и достаточно просты для понимания: чем больше x, тем больше y. Линейные уравнения всегда разрешимы, что делает их подходящими для учебников. Линейные системы обладают неоспоримым достоинством: вы можете разбирать их на некие модули, а затем собирать снова, как конструктор, – эффекты будут попросту суммироваться[37 - Тут имеется в виду следующее. Пусть есть линейное уравнение типа ?+x= = a (t)+ b (t)+ c(t). Это уравнение описывает динамику колебательного процесса, и здесь a (t), b (t)и c (t) – слагаемые, отвечающие за различные внешние воздействия. например, можно представить себе ребенка, качающегося на качелях в ветреную погоду. тогда a (t)будет обозначать усилия самого ребенка, b (t) – усилия его родителей, помогающих раскачиваться, и c (t) – силу ветра. можно разобрать исходное уравнение на кусочки, а именно – решить три отдельных уравнения, каждое из которых учитывает только один из трех эффектов (то есть х + х = a(t), x + x = b(t)nx+x = c(t)). Если теперь сложить решения этих уравнений, результат будет решением исходного уравнения. Эта аддитивность и является как раз следствием линейности – нелинейные уравнения таким свойством не обладают.].

Нелинейные системы в общем виде не могут быть решены, и эффекты в них не складываются. Изучая жидкостные и механические системы, специалисты обычно стараются исключить нелинейные элементы, к примеру трение. Если пренебречь им, можно получить простую линейную зависимость между ускорением хоккейной шайбы и силой, придающей ей это ускорение. Приняв в расчет трение, мы усложним формулу, поскольку сила трения будет меняться в зависимости от того, с какой скоростью шайба уже движется. Нелинейность означает, что каждое действие меняет правила игры. Влияние трения не является постоянным, потому что оно зависит от скорости. Скорость, в свою очередь, зависит от трения. Из-за этой обоюдной изменчивости рассчитать нелинейность весьма непросто. Вместе с тем она порождает разнообразные типы поведения объектов, не наблюдаемые в линейных системах. В динамике жидкостей все сводится к одному дифференциальному уравнению: уравнению Навье – Стокса. Будучи удивительно коротким, оно связывает скорость, давление, плотность и вязкость жидкости. Но оно нелинейно, и поэтому природу этих связей зачастую невозможно уловить, так как исследовать поведение нелинейного уравнения – все равно что блуждать по лабиринту, стены которого перестраиваются с каждым вашим шагом. Как сказал Нейман, «характер уравнения… меняется одновременно во всех релевантных отношениях; меняется как порядок, так и степень. Отсюда могут проистекать большие математические сложности»[38 - Neumann J. von. «Recent Theories of Turbulence» (1949) // Collected Works / Ed. by A. H. Taub. Oxford: Pergamon Press, R 6:437.]. Другими словами, мир был бы совсем иным и хаос не был бы так уж необходим, если бы в уравнении Навье – Стокса не таился демон нелинейности.

Три уравнения Лоренца были порождены особым видом движения в текучих средах – когда нагретые слои газа или жидкости поднимаются кверху. Это явление называется конвекцией. В атмосфере конвекция как бы перемешивает воздух, нагревающийся при соприкосновении с теплой почвой. Можно заметить, как струящиеся конвекционные волны поднимаются, подобно привидениям, над раскаленным асфальтом или другими поверхностями, излучающими тепло. Лоренц испытывал искреннюю радость, рассказывая о конвекции в чашке с горячим кофе[39 - «The predictability of hydrodynamic flow» // Transactions of the New York Academy of Sciences. Vol. 11:25:R 409–432.]. По его утверждению, это один из бесчисленных гидродинамических процессов в нашей Вселенной, поведение которых нам, вероятно, захочется предугадать. Как вычислить, насколько быстро остынет чашка кофе? Если напиток негорячий, теплота рассеется без всякого гидродинамического движения и жидкость перейдет в стабильное состояние. Однако, если кофе горячий, конвекция повлечет перемещение жидкости более высокой температуры со дна чашки на поверхность, где температура ниже. Этот процесс наблюдается особенно отчетливо, если в чашку с горячим кофе капнуть немного сливок – тогда видишь, сколь сложно кружение жидкости. Впрочем, будущее состояние подобной системы очевидно: движение неизбежно прекратится, поскольку теплота рассеется, а перемещение частиц жидкости будет замедлено трением. Как поясняет Лоренц, «у нас могут быть трудности с определением температуры кофе через минуту, но предсказать ее значение через час нам уже гораздо легче»[40 - Ibid. R 410.]. Уравнения движения, определяющие изменение температуры кофе в чашке, должны отражать будущее состояние этой гидродинамической системы. Они должны учитывать эффект рассеивания, при котором температура жидкости стремится к комнатной, а скорость перемещения ее частиц – к нулю.

Отталкиваясь от совокупности уравнений, описывающих конвекцию, Лоренц будто разобрал их на части, выбросив все, что могло показаться несущественным, и таким образом значительно упростил систему[41 - Этот набор из семи уравнений для описания конвекции был разработан Барри Сольцменом из Йельского университета, с которым Лоренц был знаком. Обычно уравнения Сольцмена описывают периодическое поведение, но, как заметил Лоренц, имелось одно исключение, при котором жидкость «отказывалась приходить в состояние покоя». Тогда Лоренц понял, что значение четырех из уравнений в ситуации хаоса сводится к нулю, поэтому их можно не учитывать. Saltzman В. «Finite Amplitude Convection as an Initial Value Problem» // Journal of the Atmospheric Sciences. Vol. P. 329.]. От первоначальной модели не осталось почти ничего, кроме факта нелинейности. В результате уравнения, с точки зрения физика, приобрели довольно простой вид. Взглянув на них – а это делал не один ученый на протяжении многих лет, – можно было с уверенностью сказать: «Я смог бы их решить».

Лоренц придерживался иного мнения: «Многие, увидев такие уравнения и заметив в них нелинейные элементы, приходят к выводу, что при решении эти элементы несложно обойти. Но это заблуждение».

Простейший пример конвекции можно наблюдать в жидкости, наполняющей сосуд с ровным дном, которое можно нагревать, и с гладкой поверхностью, которую можно охлаждать. Разница температур между горячим дном и прохладной поверхностью порождает потоки жидкости. Если разница небольшая, жидкость остается неподвижной; теплота перемещается к поверхности благодаря теплопроводности, как в металлическом бруске, не преодолевая естественного стремления жидкости находиться в покое. К тому же такая система устойчива: случайные движения в ней, происходящие, например, когда лаборант нечаянно заденет сосуд, обычно скоро затухают и жидкость возвращается в состояние покоя.

Но стоит увеличить температуру, как поведение системы меняется. По мере нагревания жидкость расширяется снизу, становится менее плотной, а значит, и чуть легче – достаточно, чтобы преодолеть трение; в результате вещество устремляется к поверхности. Если конструкция сосуда хорошо продумана, в нем появляется цилиндрический вал: горячая жидкость поднимается по одной из стенок, а охлажденная спускается по противоположной. Понаблюдав за сосудом, можно проследить непрерывный цикл таких перемещений. Вне лабораторных стен сама природа создает области конвекции. К примеру, когда солнце нагревает песчаную поверхность пустыни, перемещающиеся воздушные массы могут сформировать миражи высоко в облаках или вблизи земли.

С дальнейшим ростом температуры поведение жидкости еще больше усложняется: в завитках зарождаются колебания. Уравнения Лоренца были слишком примитивными для их моделирования, описывая лишь одну черту, характерную для конвекции в природе, – кругообразное перемещение нагретой жидкости. В уравнениях учитывалась как скорость такого перемещения, так и теплопередача, и оба физических процесса взаимодействовали друг с другом. Когда любой циркулирующий объем горячей жидкости поднимается кверху, разогретое вещество приходит в контакт с более холодной субстанцией и теряет теплоту. Однако если движение жидкости происходит достаточно быстро, она не потеряет всю избыточную тепловую энергию к тому моменту, как достигнет верха и начнет опускаться по другой стороне вала. Эта жидкость может начать подталкивать систему к вращению в противоположном направлении[42 - Появление конвективных валов в жидкости из уравнений Навье – Стокса, непрерывности и теплопроводности подробно описано в монографии Ланда П. С. Нелинейные колебания и волны. М: Либроком, 2010.].

Движение жидкости (или газа). когда жидкость нагревают снизу, в ней обычно образуются цилиндрические валы (слева). горячая жидкость поднимается по одной стороне вала, отдает тепло и опускается по противоположной – наблюдается конвекция. если жидкость нагревать сильнее (справа), возникнет нестабильность, влекущая за собой рябь в валах жидкости, бегущую в двух направлениях по всей длине цилиндров. При дальнейшем повышении температуры поток становится бурным и турбулентным.

Хотя система Лоренца не отражала полностью процесс конвекции, оказалось, что у нее были аналоги в реальном мире. К примеру, уравнения Лоренца достаточно точно описывают функционирование динамо-машины, уже вышедшей из употребления предшественницы современных генераторов, где электрический ток течет через диск, вращающийся в магнитном поле. При определенных условиях динамо-машина может дать обратный ход. Некоторые ученые, ознакомившись с уравнениями Лоренца, предположили, что, быть может, поведение динамо-машины прольет свет на другой специфический феномен – инверсию магнитного поля Земли[43 - Подобную модель можно найти в статье: Cook A. E., Roberts P. H. «The Rikitake twodisc dynamo system» // Mathematical Proceedings of the Cambridge Philosophical Society. Vol. P. 547–569.]. Известно, что так называемое геодинамо меняло свое направление много раз за земную историю[44 - Малкус; хаотичность магнитного поля Земли до сих пор остается горячо обсуждаемой темой, и некоторые ученые продолжают искать объяснения этому явлению, в том числе не исключая возможности внешнего воздействия, например потоков воздуха, идущих от огромных метеоритов. Одно из первых предположений, что изменения обусловлены хаосом, встроенным в саму систему, см.: Robbins К. A. «A moment equation description of magnetic reversals in the earth» // Proceedings of the National Academy of Science. Vol. P. 4297–4301.]. Интервалы между этими явлениями казались странными и необъяснимыми. Столкнувшись с подобной беспорядочностью, теоретики, как правило, искали решение за рамками конкретной системы, выдвигая предположения вроде столкновения с метеоритами. Но возможно, геодинамо обладает своим собственным хаотическим поведением.

Другой системой, вполне точно описываемой уравнениями Лоренца, является водяное колесо определенного типа, механический аналог вращающихся конвекционных кругов[45 - Малкус.]. Вода непрерывно льется с вершины колеса в емкости, закрепленные на его ободе, откуда вытекает дальше через небольшие отверстия. В том случае, когда поток воды мал, верхняя емкость заполняется недостаточно быстро для преодоления трения. Если же скорость водяной струи велика, колесо начинает поворачиваться под весом жидкости. При достаточном напоре колесо станет непрерывно вращаться. При еще большей скорости струи емкости будут успевать заполниться до краев и вода из них не успеет вылиться за время движения вниз. Поднимаясь вверх, своей тяжестью они станут замедлять вращение, в результате колесо может остановиться и начать вращаться в противоположном направлении.

Интуиция физика, еще не столкнувшегося с хаосом, подсказывала Лоренцу, что за длительный период времени при неизменном потоке воды система придет в устойчивое состояние. Колесо будет или равномерно вращаться, или постоянно через определенные неизменные промежутки времени менять на правление вращения, крутясь сначала вперед, затем назад. Однако Лоренц обнаружил, что это не так.

Водяное колесо Лоренца. Первая хаотическая система, обнаруженная Эдвардом Лоренцем, точно соответствует механическому устройству – водяному колесу, которое может вести себя удивительно сложным образом. Вращающееся колесо имеет те же свойства, что и вращающиеся в процессе конвекции цилиндры жидкости: колесо похоже на их поперечные сечения. Обе системы непрерывно подстегиваются потоком – воды или теплоты, – и обе рассеивают энергию. Жидкость утрачивает теплоту; вода выливается из черпаков колеса. Долгосрочное поведение обеих систем зависит от того, насколько велика управляющая ими энергия. Вода наливается сверху с постоянной скоростью. Если скорость ее небольшая, верхний черпак никогда не становится полным, трение не преодолевается и колесо не поворачивается. (Подобное явление наблюдается и в жидкости: если теплоты недостаточно, чтобы преодолеть вязкость, жидкость останется неподвижной.) С увеличением скорости водяного потока колесо начинает двигаться под тяжестью верхнего черпака (слева)и даже вращаться с постоянной скоростью (в центре). Однако при чрезмерной скорости воды (справа)вращение колеса может стать хаотичным из-за нелинейных воздействий, появившихся в системе. Черпаки, проходя под водяным потоком, наполняются в зависимости оттого, насколько быстро вращается колесо. При быстром вращении колеса им не хватает времени, чтобы наполниться. (Так же и жидкости в быстровращающихся конвекционных завитках недостает времени, чтобы поглотить тепло.) Кроме того, емкости могут начать двигаться в обратную сторону, не успев лишиться всей воды. В результате полные черпаки на движущейся вверх стороне колеса способны замедлить вращение всей системы, а затем вызвать ее поворот в обратную сторону. Фактически Лоренц обнаружил, что в течение длительных периодов времени вращение может менять свое направление несколько раз, никогда не обретая постоянной скорости и никогда не повторяясь каким-либо предсказуемым образом[46 - Подобное вращение можно наблюдать на видео: www.youtube.com/watch?v=Gu50alrmzNA.].

Три уравнения с тремя переменными полностью описывали движение данной системы[47 - Эта классическая модель, обычно называемая системой Лоренца, выглядит так:dx/dt = 10 (у?х)dy/dt = ?xz + 28х ? уdz/dt = ху ? (8/3) zС момента ее появления в «Deterministic Nonperiodic Flow» система Лоренца много исследуется; см., например, авторитетную техническую работу: Sparrow C. The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors. Springer-Verlag, 27 См. русский перевод: Лоренц Э. «Детерминированное непериодическое течение» // Странные аттракторы. М.: Мир, С. 88. (Прим. науч. ред.)]. Компьютер ученого распечатал меняющиеся значения этих переменных в следующем виде: 0-10-0; 4-12-0; 9-20-0; 16-36-2; 30-66-7; 54-115-24; 93-192-Числа в наборе сначала увеличивались, затем уменьшались по мере отсчета временных интервалов: пять, сто, тысяча…

Чтобы наглядно изобразить полученные результаты, Лоренц использовал каждый набор из трех чисел в качестве координаты точки в трехмерном пространстве. Таким образом, последовательность чисел воспроизводила последовательность точек, образующих непрерывную линию, запись поведения системы. Эта линия могла прийти в какую-то точку и там остановиться, что соответствовало бы достижению равновесия, при котором скорость и температура оставались постоянными. Был возможен и второй вариант: формирование петли, повторяющейся вновь и вновь и сигнализирующей о переходе системы в периодически повторяющееся состояние.

Но Лоренц не обнаружил ни того ни другого. Система демонстрировала своего рода бесконечно сложное поведение. Траектория всегда оставалась ограниченной, но никогда не повторялась. Изгибы линии приобретали странные, но весьма характерные очертания, похожие на два крыла бабочки или на двойную спираль в трехмерном пространстве. И эта форма свидетельствовала о полной неупорядоченности, поскольку ни одна из точек или их комбинаций не повторялась. Но эта же форма свидетельствовала и о новом типе порядка.

Спустя годы физики все еще обсуждали публикацию Лоренца – «эту замечательную, необыкновенную статью!», – и в их взгляде появлялась задумчивость. О его работе говорили так, словно она представляла собой древний манускрипт, хранивший секреты вечности. Из тысяч статей, составивших специальную литературу по проблеме хаоса, вряд ли какая-либо цитировалась чаще, чем «Детерминированное непериодическое течение» Лоренца[48 - Малкус, Лоренц.]. Многие годы ни один феномен не изображался столь бессчетное количество раз, ни об одном не сняли столько фильмов, сколько о таинственной кривой, описанной в этой главе, – двойной спирали, известной как «аттрактор Лоренца».

Она воплощала в себе сложность и запутанность, все многообразие хаоса.

Аттрактор Лоренца. Это магическое изображение (внизу), напоминающее маску совы или крылья бабочки, стало эмблемой первых исследователей хаоса. Оно раскрывает тонкую структуру, таящуюся в беспорядочном потоке информации. Традиционно изменение значений какой-либо переменной графически изображалось в виде так называемого временно?го ряда (вверху). Чтобы продемонстрировать меняющееся соотношение между тремя переменными, потребовался другой способ графического представления. В каждый момент времени три переменных задают положение точки в трехмерном пространстве; по мере изменения системы перемещение точки описывает непрерывное изменение переменных. Поскольку состояние системы никогда точно не повторяется, траектория не пересекает сама себя, образуя лишь новые и новые петли. Движение по аттрактору абстрактно, тем не менее оно передает особенности движения реальных систем. Например, переход от одного из «крыльев» аттрактора к другому соответствует началу обратного хода водяного колеса или изменению направления вращения жидкости при конвекции.

Но это во времена Лоренца ощущали немногие. Он рассказал о своих опытах Виллему Малкусу, профессору прикладной математики Массачусетского технологического института, который слыл человеком весьма тактичным и способным оценить по достоинству работу коллег. В ответ Малкус, рассмеявшись, произнес: «Эд, мы знаем, знаем доподлинно, что в жидкости ничего подобного не происходит из-за конвекции»[49 - «Deterministic Nonperiodic Flow» в середине 1960-х в научном сообществе цитировалась с периодичностью раз в год, а двумя десятилетиями позже – больше чем сто раз в год.]. По его мнению, вся сложность со временем загасится и система перейдет к установившемуся, регулярному движению.

«Конечно, мы упустили самую суть, – повторял Малкус спустя несколько десятилетий, когда в его полуподвальной лаборатории появилось настоящее, созданное для посрамления скептиков водяное колесо Лоренца. – Эду был чужд язык традиционной физики. Его мысль работала в границах некой обобщенной абстрактной модели, которая демонстрировала поведение, характерное, как он интуитивно чувствовал, для определенных аспектов внешнего мира. Он ощущал нечто, но не мог передать нам свои ощущения. Сейчас мы наконец поняли, как безраздельно владели Лоренцем его идеи».

В те времена лишь немногие сознавали, что отдельные области знания все сильнее изолируются друг от друга. Биологам было что читать и без книг по математике; более того, молекулярные биологи не отвлекались на чтение статей по популяционной биологии. Физикам не хватало времени штудировать метеорологические журналы. Только некоторые математики оценили открытие Лоренца, и еще целых десять лет физики, астрономы и биологи открывали уже открытое. В конце концов, Лоренц был метеорологом, и никому не приходило в голову искать первое описание феномена хаоса на сто тридцатой странице двадцатого выпуска JournaloftheAtmosphericSciences[50 - Предложенное Куном понимание научной революции широко критиковалось и обсуждалось спустя четверть века после того, как он его высказал, примерно в то время, когда Лоренц пытался построить с помощью компьютера первые погодные модели. В рассказе о взглядах Куна я полагался в первую очередь на его работу: The Structure of Scientific Revolutions, 2nd ed. enl. Chicago: University of Chicago Press, 1970; а также: The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago: University of Chicago, 1977; «What Are Scientific Revolutions?» //Occasional Paper. No. Center for Cognitive Science, Massachusetts Institute of Technology; и интервью с Куном. Еще один полезный и важный источник, который содержит размышления о предмете: Cohen I. В. Revolution in Science. Cambridge, Mass.: Belknap Press, 1985.].

Глава 2

Революция

Конечно, нужно напрячься, Чтобы выйти за границы того, Что называют статистикой.

    Стивен Спендер

Свежее видение. Маятник, “космические шары” и качели на детской площадке. Изобретение “подковы”. Загадка разгадана: Большое красное пятно на Юпитере.

Историк науки Томас Кун рассказывает о занимательном эксперименте, проведенном двумя психологами в 1940-х годах[51 - Structure. P. 62–65, со ссылкой на: Bruner J. S., Postman L «On the Perception of Incongruity: A Paradigm» // Journal of Personality. Vol. XVIII. R 206.]. Испытуемым одну за другой показывали игральные карты и просили их назвать. Конечно, в эксперименте была небольшая хитрость: некоторые из карт были особенными, например, шестерка пик имела красную масть, а дама бубен – черную.

Пока испытуемым давали совсем мало времени, чтобы разглядеть карты, все шло как по маслу. Ответ на вопрос следовал незамедлительно, и люди не замечали ничего странного. Посмотрев на красную шестерку пик, они определяли ее как шестерку червей или как шестерку пик. Когда же время демонстрации карт увеличили, испытуемые засомневались. Им стало понятно, что с картами что-то не так, но что именно – они сообразить не могли. Как правило, они отвечали, что видели нечто странное, что-то вроде черного сердца с красной каймой.

В конце концов, получив возможность хорошенько рассмотреть каждую карту, большинство разгадало, в чем подвох, и сыграло партию без ошибок. Однако некоторые участники опыта, так и не раскрывшие обмана, совершенно потерялись, испытывая при этом настоящую муку. «Какой бы ни была эта масть, я не могу ее определить, – жаловался один. – То, что мне сейчас показали, вообще не похоже на игральную карту. Я не знаю, какого цвета изображение, и не уверен, пики это или черви. Сейчас я уже не могу в точности сказать даже, как выглядят пики… О господи!»[52 - Structure. P. 24.]

Профессиональные исследователи, схватывающие смутные, быстро мелькающие картины жизни природы, в не меньшей степени склонны испытывать страдания и смятение, когда встречаются с чем-то странным. И когда эти странности меняют то, каким образом ученые смотрят на мир, происходят самые важные открытия. Таково мнение Куна, и история хаоса его подтверждает.

В 1962 году, когда появились первые публикации Куна о том, как работают ученые и как происходят научные революции, они были встречены со смесью враждебности и восторженности, и споры вокруг них не утихают до сих пор. Кун весьма скептически отзывался о традиционных воззрениях на прогресс в науке – что тот якобы совершается за счет накопления знаний, дополнения старых открытий новыми и возникновения новых теорий под влиянием вскрытых экспериментами фактов. Кун опровергал представление о науке как об упорядоченном процессе поиска ответов на заданные вопросы, подчеркивая разницу между тем, что предпринимают ученые при исследовании вполне уместных и ясно поставленных вопросов внутри своих дисциплин, и исключительными, неординарными работами, порождающими революции. Неслучайно в его представлениях ученые не казались идеальными рационалистами.

По мнению Куна, обычная наука состоит преимущественно из действий улучшающего характера[53 - Tension. P. 229.]. Экспериментаторы оттачивают методику постановки опытов, проделанных уже не один раз до них[54 - Structure. P. 13–15.]. Теоретики то добавляют кирпичик в стену познания, то слегка изменяют ее контур. И вряд ли дела могут обстоять иначе. Если бы все ученые начинали с нуля, подвергая сомнениям базовые предположения, то им стоило бы огромных трудов достичь того уровня, который необходим для выполнения действительно полезной работы. Во времена Бенджамина Франклина горстка энтузиастов в попытке постичь природу электричества могла – и должна была – выдвигать свои собственные основополагающие принципы[55 - Tension. P. 234.]. Один из этих ученых считал притяжение наиболее важным действием электричества, принимая последнее за своего рода «испарение», исходящее от всевозможных субстанций. Другой полагал, что электричество подобно жидкости, передаваемой материалом-проводником. И все они без особых затруднений объяснялись как с обывателями, так и между собой, поскольку тогда еще не был выработан общий для всех, специальный язык для описания объекта исследования. А вот исследователь XX века, изучающий динамику жидкости, не смог бы совершить открытия, не имея в своем распоряжении специальной терминологии и математического аппарата. Но взамен, сам того не ощущая, он терял возможность ставить под сомнения первоосновы своей науки.

Кун видит в обычной науке средство решения задач, с которыми студенты сталкиваются, впервые открыв учебник. Задачи эти сопровождают большинство ученых в магистратуре, при работе над диссертацией, при написании статей для научных журналов (необходимый элемент успешной академической карьеры). «В обычных условиях ученого-исследователя нельзя назвать новатором. Он лишь решает головоломки, причем именно те, которые, по его мнению, могут быть сформулированы и решены в рамках существующей научной традиции», – пишет Кун[56 - Свитанович.].

Но случаются и революции, когда из пепла отжившей, загнавшей себя в тупик науки восстает новая. Зачастую такая революция носит междисциплинарный характер: важнейшие открытия нередко делаются исследователями, переступившими границы своей специализации. Занимающие их вопросы не рассматриваются как допустимые направления исследований, их диссертации отклоняют, а в публикации статей отказывают. Да и сами ниспровергатели не уверены, что смогут распознать решение, даже увидев его. Но они готовы рискнуть карьерой. Немногочисленные вольнодумцы работают в одиночку, они не способны даже самим себе внятно объяснить направление своих изысканий и опасаются рассказывать о них своим коллегам – таков романтический образ, рисуемый Куном. И этот образ не раз встречался в реальной жизни в области исследований хаоса.

Ученые, первыми обратившие внимание на феномен хаоса, могли многое поведать о неодобрении и даже об открытой враждебности, с которой они подчас сталкивались. Аспирантов убеждали не писать диссертаций по неизвестной дисциплине, о которой их руководителям мало что известно: подобное поставит под удар всю карьеру. Исследователь, занимавшийся физикой элементарных частиц, прослышав о новой математике, начинал сам с ней экспериментировать, думая о ее красоте – и сложности, однако при этом чувствовал, что никогда не сможет рассказать об этом коллегам[57 - Форд, интервью, а также: «Chaos: Solving the Unsolvable, Predicting the Unpredictable» // Chaotic Dynamics and Fractals / Ed. by M. F. Barnsley and S. G. Demko. New York: Academic Press, 1985.]. Почтенные профессора, шагнув за пределы общепринятых научных изысканий и ощутив непонимание, а зачастую и просто негодование собратьев по цеху, пугались, что переживают возрастной кризис. Но испуг отступал перед искушением пережить волнение, порождаемое действительно неизведанным. Даже люди, не принадлежавшие к академическим кругам, но воспринимавшие перемены с энтузиазмом, обнаруживали в себе это чувство. Для Фримена Дайсона, в 1970-е годы работавшего в Институте перспективных исследований, соприкосновение с хаосом стало «чем-то вроде электрического шока». Другие же ученые просто понимали, что впервые за всю свою сознательную жизнь в науке они становятся свидетелями настоящей смены парадигмы, переворота в мышлении.

Специалисты, сразу признавшие за хаосом право на существование, бились над тем, как облечь свои открытия и размышления в подходящую для публикаций форму, поскольку работа велась на стыке дисциплин. Она казалась слишком абстрактной для физики и чересчур экспериментальной для математики. Препятствия на пути распространения новых веяний и яростное сопротивление традиционных школ кое-кто воспринял как свидетельство истинно революционного характера зарождавшейся науки. Поверхностные идеи усваиваются легко, но идеи, которые требуют пересмотреть представления о мире, вызывают враждебность. Джозеф Форд, физик из Технологического института Джорджии, нашел подтверждение этого у Толстого: «Я уверен, что большинство людей, в том числе и те, что свободно чувствуют себя, разрешая чрезвычайной трудности вопросы, редко могут принять даже самую простую и очевидную истину, если она обяжет их согласиться с ложностью результатов своей работы – выводов, с восторгом представленных в свое время коллегам, с гордостью описанных слушателям, вплетенных, нить за нитью, в жизнь самих их создателей»[58 - Но Майкл Берри отмечает, что в Оксфордском словаре есть редко употребляемое слово «хаология», которое означает «историю или описание хаоса». Berry M. «The Unpredictable Bouncing Rotator: A Chaology Tutorial Machine», preprint, H. H. Wills Physics Laboratory, Bristol.].

Многим представителям основных направлений науки новая дисциплина виделась весьма смутно. Некоторые, особенно исследователи динамики жидкостей, придерживавшиеся традиционных воззрений, отзывались о ней довольно резко. На первый взгляд утверждения теории хаоса выглядели дикими и ненаучными. К тому же они базировались на математическом аппарате, который казался необычным и сложным.

Однако, по мере того как адептов хаоса становилось все больше, некоторые факультеты относились к ним неодобрительно – но были и те, что им благоволили. Некоторые научные журналы взяли за неписаное правило не публиковать работ о хаосе – но другие, напротив, печатали исключительно статьи, посвященные новой дисциплине. «Хаотистов» (их называли и так) стали выдвигать на получение престижных ежегодных стипендий и премий[59 - Рихтер.]. К середине 1980-х годов расслоение в академической среде привело к тому, что приверженцы хаоса заняли весьма значительные административные посты в высших учебных заведениях. Так были созданы центры и институты, специализирующиеся на «нелинейной динамике» или «сложных системах»[60 - На сегодняшний день одной из крупных лабораторий в Северной Америке, занимающейся вопросами нелинейной динамики и вибрационных испытаний, является Dynamics, созданная профессором, исследователем в области машиностроения Альбертом Луо.].

Хаос сделался не только объектом изучения, но и методом; не просто сводом верований, но и средством продвижения науки вперед. Он породил новые способы использования компьютерной техники, воздавшие должное возможностям скромных терминалов, которые обеспечивают гибкую связь человека с компьютером и работают эффективнее сверхбыстродействующих моделей Cray или Cyber. Для

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=63109900&lfrom=174836202) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Примечания

1

Фейгенбаум, Каррутерс, Кэмпбелл, Фармер, Вишер, Керр, Хасслачер, Джен.

Все книги на сайте предоставены для ознакомления и защищены авторским правом