Ибратжон Хатамович Алиев "Все науки. №3, 2023. Международный научный журнал"

Международный научный журнал «Все науки», созданный при OOO «Electron Laboratory» и Научной школе «Электрон», является научным изданием, публикующим последние научные результаты в самых различных областях науки и техники, представляя собой также сборник публикаций по вышеуказанным темам коллегией авторов и рецензируемый редколлегией (учёным советом) Научной школы «Элеткрон» и на платформе «Ридеро» ежемесячно.

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785005994318

child_care Возрастное ограничение : 12

update Дата обновления : 27.04.2023


1. Потрягин Л. С. Обыкновенные дифференциальные уравнения. – М.: Наука, 1974.

2. Тихонов А. Н., Самарский А. А. Уравнения математической физики. – М.: Наука, 1972.

3. Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. – 4-е изд. – Фзиматлит, 2005.

4. Умнов А. Е., Умнов Е. А. Основы теории дифференциальных уравнений. – Изд. 2-е. – 2007. – 240 с.

5. Чарльз Генри Эдвардс, Дэвид Э. Пенни. Дифференциальные уравнения и проблема собственных значений: моделирование и вычисление с помощью Mathematica, Maple и MATLAB = Differential Equations and Boundary Value Problems: Computing and Modeling. – 3-е изд. – М.: «Вильямс», 2007.

6. Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. – М.: Наука, 1969.

НЕКОТОРЫЕ ОПЕРАЦИИ И ЧАСТНЫЕ СЛУЧАИ МАТЕМАТИЧЕСКОГО АНАЛИЗА В ИНГЕНЦИАЛЬНОМ МНОЖЕСТВЕ

Алиев Ибратжон Хатамович

Студент 2 курса факультета математики-информатики Ферганского государственного университета

Ферганский государственный университет, Фергана, Узбекистан

Аннотация. Важность определения и преобразования ингенциальных чисел и настоящего множества с каждым днём становится всё более очевидном, особенно с входом данного понятия в математическую физику, но и как чисто математический объект они представляют не малый интерес, хотя при этом имеют и практическое применение. В настоящей работе, описаны методы проведения некоторых алгебраических операций с ними, в том числе с использованием формулы Эйлера и интеграллами.

Ключевые слова: ингенциальные числа, математический анализ, алгебраические операции, формула Эйлера, интегрирование, производные.

Annotation. The importance of defining and converting exponential numbers and a real set is becoming more and more obvious every day, especially with the entry of this concept into mathematical physics, but as a purely mathematical object they are of no small interest, although they also have practical applications. In this paper, methods of performing some algebraic operations with them are described, including using Euler’s formula and integrals.

Keywords: inertial numbers, mathematical analysis, algebraic operations, Euler formula, integration, derivatives.

Сам процесс логарифмирования ингенциального числа общего вида, можно видеть в (1).

Таким образом, при логарифмировании, образуются 2 части самого выражения – действительная, как натуральный логарифм от коэффициента ингенциальной части и логарифм от ингенциальной единицы, которая определяется в (2).

То есть имеется в этом случае возникает вопрос, в какую степень необходимо возвести число Эйлера, чтобы она выдало ингенциальную единицу. Ответ довольно прост – это отрицательный логарифм от нуля (2) из этого следует, что логарифм от ингенциального числа составляет (3).

Также интересно решение уравнения Эйлера с ингенциальной единицей, а после и с общим видом ингенциального числа, что и описывалось далее, приняв выражения как неизвестные. И для этого изначально можно исходить из разложений Тейлора (4—6).

Что легко доказывается, поскольку при обнулении неизвестной синус в (5) также обнуляется, а косинус в (6) равняется единице. И уже из этого вытекает (7).

И неизвестным в (7) могут быть все возможные числа, как комплексные, при подстановке которых вытекает замечательное равенство Эйлера, так и ингенциальные. И для начала, рассмотрим частный случай, с ингенциальной единицей и произведём следующие преобразования (8).

Исходя из этого соотношения выполняем преобразования в (9), приведя к уравнению (10), при этом учитывая, что это выражение является тождественным возможно дифференцировать обе части уравнения в (11), выполнив соответствующие преобразования.

Поскольку завершающее равенство (11) можно представить как в (12), далее проведя дополнительное дифференцирование, также вводя условие, что это тождество, а в (13) подробно расписан процесс дифференцирования для правой стороны равенства. А для левой же части нет необходимости в подробной росписи.

Когда дифференцирование произведено, достаточно произвести элементарные преобразования, получив тригонометрический вид частного случая (14).

Теперь же, когда получен общий вид для дважды дифференцированного случая, необходимо вернуться к первообразным, ибо это тождество, в результате чего получаются следующие равенства (15—16).

И действительно это значение близко к самому ингенциальному значению, таким образом это выражение может считаться вторым видом записи ингенциальной единицы. Теперь же, можно переходить и к решению уравнения Эйлера для общего вида ингенциальных чисел, проведя в начале первую подстановку и обычные операции замены на этапе (17) и (18).

Когда же нужные преобразования подходят к концу, а иные действия уже не имеют места, то достаточно также продифференцировать обе части равенства как действительное тождество (19).

Дифференцируя первую часть равенства, можно прийти к результату в (20), а для второй части, вычисления продолжатся на протяжении всего (21).

Все книги на сайте предоставены для ознакомления и защищены авторским правом