9785006009387
ISBN :Возрастное ограничение : 18
Дата обновления : 07.07.2023
Пример: 1234,50 округляют до 1234; 8765,50 – до 8766.
Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу.
Пример: 6783,6 округляют до 6784; 12,34501 – до 12,35.
Погрешность, возникающая в результате вычислений, не должна превышать 10% суммарной погрешности измерений. Поэтому, если над результатами измерений предстоит произвести некоторые математические операции, то при округлении результатов добавляют один разряд справа, то есть в первом примере результат 1,072000 нужно округлить не до 1,0720, а до 1,07200. Большая часть ГОСТов на методы испытаний требуют, чтобы запись результата анализа была сделана, как результат среднеарифметического показателя двух результатов измерений, расхождение между которыми не должно превышать 0,5% при Р = 0,95%.
1.4. Оборудование, применяемое в аналитической деятельности
1.4.1. Виды лабораторного оборудования
Для того чтобы предоставлять быстрые и точные результаты испытаний лаборатория должна создать эффективную систему управления оборудованием. Такая система включает множество аспектов – от оценки и выбора оборудования до его утилизации.
Приборное оснащение – это совокупность средств измерений, испытательного и вспомогательного оборудования, необходимых для проведения испытаний продукции в области деятельности лаборатории.
Приборное оснащение должно позволять проводить испытания, регламентированные в нормативной документации на пищевую продукцию и продовольственное сырье и испытания на соответствие нормативам безопасности, введенным соответствующими санитарными правилами и нормами. Испытания должны проводиться с использованием стандартизированных методов и аттестованных методик выполнения измерений. Для контроля качества сырья и выпускаемой продукции используемые методы могут быть не стандартизированными, но должны быть аттестованы и включены в соответствующую техническую документацию. Основными требованиями в данном случае являются высокая производительность и низкая стоимость испытаний.
Область деятельности лаборатории определяет обязательный перечень типов средств измерений, испытательного и вспомогательного оборудования, которые в соответствии с применяемыми методами испытаний должна иметь испытательная лаборатория.
Наличие высококвалифицированных специалистов в штате лаборатории позволяет проводить, помимо рутинных испытаний в соответствии с областью деятельности и другие виды работ, приводящих в конечном итоге к росту конкурентоспособности испытательной лаборатории, а именно: разработка новых методов проведения испытаний и методик выполнения измерений; анализ и обобщение результатов проводимых испытаний и разработка на основе этого предложений, направленных на совершенствование существующей нормативной документации на методы испытаний; участие в разработке нормативной документации на новые методы испытаний; испытания нового измерительного оборудования.
Финансовые возможности организации, создающей испытательную лабораторию, определяют тактику закупок приборов и оборудования. В первую очередь целесообразно приобрести наиболее дорогостоящие и универсальные приборно-измерительные комплексы, такие как газовый хроматограф, жидкостный хроматограф, атомно-абсорбционный спектрофотометр и др., а также комплекс оборудования для пробоподготовки. Это позволит испытательной лаборатории проводить практически в полном объеме испытания по показателям качества и безопасности пищевой продукции. В дальнейшем, при необходимости, можно будет покупать специализированные средства измерений и испытательное оборудование для проведения конкретных видов испытания.
Цель управления оборудованием заключается в обеспечении точного, надежного и оперативного проведения испытаний и измерений, а для того, чтобы достичь этой цели лаборатория должна решить ряд задач. Состав задач определяется видом оборудования и спецификой деятельности лаборатории.
В зависимости от назначения и сферы применения лабораторное оборудование можно разделить на несколько видов. В нормативных документах они имеют разные названия, но описание сфер применения этих видов оборудования схожи.
К основным видам лабораторного оборудования относятся:
– общелабораторное оборудование. Это оборудование, которое практически не оказывает или оказывает самое минимальное влияние на результаты испытаний и измерений. К такому оборудованию относится лабораторная мебель, различные нагревательные приборы без контроля температуры, мешалки, лабораторная посуда общего назначения (без мерных делений) и т.п.;
– мерная посуда. Она предназначена для точного определения объемов. К этому виду лабораторного оборудования относятся мерные колбы, пипетки, пикнометры, бюретки и пр.;
– измерительное оборудование. Предназначено для проведения измерений и получения значений параметров (качественных или количественных). Сюда относятся различные средства измерений и индикаторы (линейки, термометры, вольтметры, спектрометры, химические индикаторы, термоиндикаторы и т.п.);
– стандартные образцы, эталоны, меры. Это особые виды средств измерения, предназначенные для сравнения измеряемых характеристик с установленными значениями (например, при градуировке, аттестации или поверке измерительного оборудования). Стандартные образцы по своему назначению исполняют роль мер;
– испытательное оборудование. Оборудование, предназначенное для воспроизведения условий испытаний.
Еще один вид лабораторного оборудования, которое применяется в деятельности лабораторий, это компьютерные системы и программы. Они могут быть встроены в измерительное или испытательное оборудование, или являться самостоятельными единицами оснащения лаборатории.
Под управление должны подпадать все виды лабораторного оборудования, но, в первую очередь, те из них, которые оказывают существенное влияние на результаты испытаний или измерений. К ним предъявляются наиболее жесткие и строго регламентированные требования по управлению оборудованием лаборатории.
Номенклатура оборудования испытательной лаборатории пищевой продукции определяется действующей нормативной и методической документацией на испытания, распространяющейся на объекты испытаний и (или) виды испытаний.
Большая часть работ по анализу качества продукции связана с измерениями, выполняемыми с помощью тех или иных средств измерений, особым образом выбираемых и находящихся на специальном обслуживании, что обеспечивает единство и точность результатов контроля. К средствам измерений относятся: меры, измерительные преобразователи, измерительные приборы и измерительные принадлежности.
Мерыпредназначены для воспроизведения физической величины (массы, объема и пр.) заданного размера. Мерами являются гири, наборы гирь, шаблоны, песочные часы, мерная химическая посуда, стандартные растворы, образцовые вещества и пр.
Измерительные преобразователи служат для выработки сигнала в форме, удобной для его передачи, хранения и обработки. Измерительные преобразователи обычно являются составной частью более или менее сложных измерительных комплексов.
Измерительные приборы предназначены для выработки сигнала в форме, удобной для непосредственного восприятия. Приборы могут быть шкальными, цифровыми и регистрирующими. К измерительным приборам относятся термометры, ионометры, манометры, секундомеры, рефрактометры, фотоколориметры, амперметры, вольтметры и др.
Измерительные принадлежности используются при измерениях и влияют на их результаты. К ним могут быть отнесены сушильные шкафы, термостаты и другие устройства.
1.4.2.Требования к метрологическим характеристикам оборудования испытательной лаборатории
Выбор средств измерений осуществляют исходя из их метрологических характеристик, т.е. таких технических параметров, от которых зависит точность измерения.
Одной из основных метрологических характеристик любого средства измерения, определяющей его пригодность для выбранной цели измерений, является нижний и верхний пределы измерения, т.е., наименьшее и наибольшее значения величины, которые можно измерить данным средством измерения. Нижний и верхний пределы измерений ограничивают диапазон измерений.Под диапазоном измерений понимается область значений измеряемой величины, для которой нормированы допускаемые погрешности средства измерения.
Немаловажной метрологической характеристикой измерительного прибора является его чувствительность, представляющая собой отношение сигнала на выходе прибора к вызвавшему его изменению измеряемой величины.
Важнейшей метрологической характеристикой, на которой базируется выбор средства измерения, является его погрешность. Способ выражения погрешности зависит от вида средства измерений. Точность мер характеризуют абсолютной и относительной погрешностями.
Погрешности средств измерений принято подразделять на статические, имеющие место при измерении постоянных во времени величин, и динамические, появляющиеся при измерении переменных во времени величин и обусловленные инерционными свойствами средства измерения.
В нормативной документации на меры, измерительные преобразователи и приборы часто указывают класс точности средства измерения. Класс точности представляет собой обобщенную характеристику, определяемую пределами основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность результатов измерений.
Метрологическое обслуживание, т.е. учет, ревизию, ремонт, поверку всех средств измерений, применяемых в лаборатории, должна осуществлять метрологическая служба предприятия. Руководитель лаборатории несет ответственность за применение при анализах неисправных и неповеренных средств измерений и поэтому должен обеспечить контроль за их состоянием и соблюдением сроков поверки, наличием поверительных клейм или свидетельств о поверке.
Сроки периодических поверок (межповерочные интервалы) устанавливаются метрологической службой с учетом данных о фактической надежности, интенсивности использования и условий эксплуатации каждого из средств измерений. Как правило, срок поверки основных видов приборов, применяемых в лаборатории, один раз в год.
1.4.3. Технические характеристики оборудования
Данный критерий является наиболее значимым при принятии решения о приобретении приборов и оборудования. Приобретаемое оборудование по своим метрологическим и техническим характеристикам должно в обязательном порядке удовлетворять требованиям, предъявляемым к оборудованию лабораторий, а также позволять проводить испытания продукции с производительностью и себестоимостью, обеспечивающими конкурентоспособность испытательной лаборатории. Под этим подразумевается, что:
– диапазон измерения контролируемого показателя у средства измерения перекрывает интервал допустимых значений этого показателя в испытываемой продукции;
– погрешность измерения с использованием данного средства измерения соответствует заданным пределам допускаемых значений, при этом оптимальным вариантом считается тот, в котором погрешность измерения находится в интервале примерно от 20 до 60% установленных допустимых пределов;
– диапазон воспроизведения внешних воздействующих факторов и (или) режимов функционирования приобретаемого испытательного оборудования и его точностные характеристики соответствуют установленным в нормативных документах требованиям;
– производительность оборудования позволяет проводить испытания в соответствии с требуемой интенсивностью;
– используемое оборудование соответствует требованиям безопасности и не наносит вреда окружающей среде;
– желательно использование автоматизированных измерительных комплексов и оборудования с регистрирующими устройствами для снижения систематической составляющей погрешности измерения, создаваемой оператором, и обеспечения документированности полученных результатов.
1.4.4. Методическая обеспеченность средств измерения
Каждое средство измерения, внесенное в Госреестр, потенциально может быть использовано для оснащения испытательной лаборатории. Однако обязательным условием возможности использования того или иного средства измерения является наличие стандартизированных или аттестованных методик выполнения измерений (далее – МВИ). Для испытательного оборудования необходимо наличие методик первичной и периодической аттестации. В настоящее время большинство производителей аналитического оборудования финансируют разработку и аттестацию МВИ с использованием их приборов. Такие МВИ поставляются либо вместе с приборами, либо отдельно. Наличие аттестованных МВИ, поставляемых вместе с покупаемым аналитическим оборудованием, является весомым аргументом для принятия решения в пользу закупки того или иного прибора. При оценке методической обеспеченности аналитического оборудования необходимо учитывать то, что для подавляющего большинства показателей, по которым испытывается продукция, разработано несколько вариантов МВИ, предполагающих использование как различных методов измерения, так и различных вариантов средств измерения, работающих на одинаковых принципах.
1.4.5. Возможность технического обслуживания оборудования
Для любого измерительного или испытательного оборудования необходимо выполнение определенного перечня процедур, направленных на поддержание и подтверждение его работоспособности и соответствия заявленным техническим характеристикам. К таким процедурам относятся техническое обслуживание с периодичностью, определяемой руководством по эксплуатации, ремонт, замена комплектующих с ограниченным сроком службы, поверка (калибровка) или аттестация (первичная и периодическая).
В связи с этим при покупке оборудования необходимо учитывать наличие сервисных служб фирм-производителей и опыт взаимодействия с ними: оперативность, квалификация специалистов сервиса, объем гарантийного обслуживания, стоимость обслуживания.
Кроме этого, надо продумать, кем будет аттестовываться и поверяться закупаемое оборудование. Удобнее всего это делать в региональных центрах стандартизации и метрологии (далее – ЦСМ). Надо заранее поинтересоваться, имеют ли право на проведение поверки данного типа средств измерения или аттестацию интересующего вас испытательного оборудования близлежащий ЦСМ. Также необходимо учитывать, что для некоторых типов средств измерения и испытательного оборудования процедура поверки или аттестации может потребовать исключение поверяемого оборудования из рабочего цикла лаборатории на довольно длительный срок (несколько дней).
1.4.6. Эксплуатационные расходы
Как правило, фирма-производитель при поставке оборудования в стандартной комплектации предусматривает запасные части и расходные материалы, достаточные для работы оборудования в течение полугода или года при условии оптимальной загрузки. В дальнейшем расходы на их приобретение несет испытательная лаборатория. Стоимость некоторых из них, в том числе являющихся элементами, определяющими функционирование и целевое назначение оборудования, может быть весьма значительна. Так, например, стоимость капиллярной колонки для газового хроматографа, срок службы которой от 6 до 18 месяцев, в зависимости от параметров колонки и фирмы-производителя находится в диапазоне от 500 до 3000 $ и выше.
Кроме приобретения расходных материалов и запасных частей к эксплуатационным затратам относятся:
– расходы на эксплуатацию и обслуживание вспомогательного оборудования (вентиляция, кондиционирование, газовые линии и пр.);
– расходы на утилизацию опасных для окружающей среды и здоровья людей отходов, образующихся при эксплуатации оборудования (сливы агрессивных сред и растворов, содержащих высокотоксичные соединения);
– расходы на различные виды обслуживания оборудования;
– расходы на коммунальные услуги (электроэнергия, водоснабжение, отопление).
Эксплуатационные расходы необходимо оценивать по результатам работы за достаточно длительный промежуток времени. Такое требование обусловлено тем, что эффект от приобретения некоторых приспособлений, расходных материалов и вспомогательного оборудования становится заметным именно при таком подходе. Например, затраты на приобретение защитного патрона для жидкостного хроматографа окупаются за счет существенного, в 2—3 раза, увеличения срока службы колонки без существенного уменьшения ее эффективности. В таких случаях полезно оценивать срок окупаемости того или иного оборудования.
1.4.7. Универсальность оборудования
Под универсальностью оборудования понимают техническую и юридическую возможность его использования для проведения испытаний разных групп однородной продукции. Универсальным в указанном смысле оборудованием является, например, атомно-абсорбционный спектрофотометр, использование которого для определения содержания токсичных элементов во всех видах пищевых продуктов и продовольственного сырья регламентировано стандартами или другими документами федерального уровня.
Еще одним примером универсального оборудования может служить жидкостной хроматограф. В настоящее время использование жидкостного хроматографа предусматривается стандартизированными методами для определения большой группы показателей, характеризующих качество, состав и безопасность различных видов продукции (например, для определения многих видов пищевых добавок). Универсальными средствами измерения являются также газовый хроматограф, инверсионный вольтамперометрический анализатор, колориметр (спектрофотометр), рН-метр, весы, термометры и др.
Универсальным испытательным оборудованием являются сушильные шкафы и термостаты. Преимущества универсального оборудования очевидны: резко снижаются статьи расходов испытательной лаборатории на закупку приборов и эксплуатационные расходы; снижаются расходы на подготовку и переподготовку персонала лаборатории; упрощается проведение внутрилабораторного и внешнего контроля качества выполняемых измерений.
В то же время, универсальные измерительные комплексы, по сравнению со специализированными приборами, имеют, как правило, меньшую производительность и, в некоторых случаях, более узкий диапазон измерений при проведении испытаний конкретного вида продукции. Это определяет целесообразность выбора специализированных измерительных комплексов в тех случаях, когда планируется поступление на испытания большого потока однородной продукции. Кроме того, необходимо учитывать то, что универсальность оборудования не всегда может быть в полном объеме использована в реальных условиях проведения испытаний. Например, определение микропримесей в пищевой продукции и определение жирно-кислотного состава масложировых продуктов можно проводить на одном и том же газовом хроматографе с использованием одного и того же детектора, но лучше иметь несколько экземпляров прибора.
Наличие нескольких экземпляров газовых хроматографов позволяет реализовать выполнение измерений по методикам, предполагающим использование различных типов детекторов или предназначенным для существенно различающихся диапазонов содержания определяемых веществ, без затрат времени на перенастройку прибора и без снижения качества измерений.
1.4.8. Перспективность оборудования
Рассматривая тенденции развития аналитического приборостроения, можно отметить, что в последнее время наиболее активно развиваются следующие направления: газожидкостная хроматография, инверсионная вольтамперометрия, атомно-абсорбционный и атомно-эмиссионый метод анализа. Перечисленные методы количественного химического анализа отличаются высокой чувствительностью (возможно обнаружение в пробе пикограммовых количеств определяемого вещества), специфичностью (при создании определенных условий анализа возможно раздельное определение пространственных и оптических изомеров) и производительностью.
Современные газовые и жидкостные хроматографы, вольтамперометрические представляют собой автоматизированные измерительные комплексы, позволяющие проводить измерения в сериях образцов с минимальным вмешательством со стороны оператора, обрабатывать результаты в режиме реального времени и документировать их, создавать базы данных результатов испытаний с возможностью проведения различных видов статистического анализа и многое другое. Анализ разработанных за последнее время стандартизированных методов испытаний показывает, что подавляющее большинство из них основано на использовании перечисленных методов.
Стоимость оборудования – важный фактор. Некоторые руководители испытательных лабораторий придерживаются принципа «чем дороже – тем лучше» и забывают о том, что существует целый ряд российских фирм, выпускающих приборы, не уступающие по техническим и метрологическим характеристикам зарубежным аналогам, но при этом имеющие одно очень важное преимущество – их стоимость в несколько раз меньше.
1.5. Химические реактивы
1.5.1. Классификации и фасовка реактивов
По своему назначению реактивы могут быть разделены на две основные группы: общеупотребительные и специальные.
Общеупотребительныереактивы имеются в любой лаборатории, и к ним относится сравнительно небольшая группа химических веществ: кислоты (соляная, азотная и серная), щелочи (раствор аммиака, едкие натр и кали), окиси кальция и бария, ряд солей, преимущественно неорганических, индикаторы (фенолфталеин, метиловый оранжевый и др.).
Специальные реактивы применяются только для определенных работ.
По чистоте реактивы делятся на химически чистые (х. ч.), чистые для анализа (ч. д. а.), чистые (ч.).
Кроме того, имеются реактивы кондиций: технический (техн.), очищенный (оч.), особой чистоты (ос. ч.), высшей очистки (в. оч.) и спектрально чистый (сп. ч.).
Для реактивов каждой из этих категорий установлено определенное допустимое содержание примесей.
Наиболее употребительные реактивы, расход которых может быть значительным, покупаются в крупной расфасовке, в банках или бутылях, содержащих иногда по нескольку килограммов вещества. Мало употребительные и редкие реактивы обычно имеют мелкую расфасовку, от 10 до 1 г, и даже мельче. Наиболее дорогие и редкие реактивы, как правило, хранят отдельно.
Многие реактивы поступают в лабораторию в крупной таре. Отбор мелких порций веществ непосредственно из барабанов, больших бутылей запрещен. По этой причине расфасовка реактивов – довольно частая операция в лабораторной практике. Эта операция связана с рядом опасностей, поэтому доверять се можно только опытным лицам, хорошо знающим свойства данных веществ.
Твердые реактивы при хранении в банках могут слежаться в плотные комки, которые трудно извлекать. Поэтому, прежде чем брать твердый реактив из банки, нужно (при закрытой пробке) потрясти банку, ударяя её ладонью по боку. Если слежавшийся реактив при этом не рассыпается, тогда, открыв пробку, разрыхляют верхний слой при помощи чистого рогового или фарфорового шпателя, или стеклянной палочки. Металлический шпатель применять для этой цели не рекомендуется.
Перед взятием реактива из банки нужно осмотреть ее горло и удалить с него все, что может попасть в пересыпаемое вещество и загрязнить его (пыль, парафин, всякие замазки и пр.). Очень удобно брать реактивы из банки при помощи фарфоровой ложки, фарфорового шпателя или же пересыпать их через воронку для порошков. Воронку вставляют в горло банки, в которую пересыпают то или иное вещество; этой же воронкой можно пользоваться при переливании очень густых, вязких жидкостей.
Просыпавшийся на стол реактив (неизбежно при этом загрязняющийся) нельзя высыпать обратно в ту же банку, где он хранится. Забота о сохранении чистоты реактивов – самое главное правило при работе с ними.
Если в банке остается очень мало реактива, остатки следует пересыпать в более мелкую тару – это освободит место в шкафу и сократит потери при взятии реактива.
Перед тем как насыпать реактив в банку, ее нужно хорошо вымыть и высушить, предварительно подобрав к ней пробку. В непросушенные банки пересыпать реактив нельзя.
При взвешивании сухих реактивов нельзя насыпать их прямо на чашку весов, так как при этом возможна порча весов.
Расфасовку твердых реактивов, способных раздражать кожу или слизистые оболочки, следует производить в перчатках, защитных очках или в маске. Волосы надо убирать под косынку, манжеты и ворот халата должны плотно прилегать к телу.
После работы с пылящими веществами полезно принять душ, а спецодежду отдать в стирку. Для защиты органов дыхания от пыли и едких паров пользуются респираторами или противогазами. Нельзя заменять респираторы марлевыми повязками – они недостаточно эффективны.
Расфасовку агрессивных реактивов должны производить не менее чем два работника. Наготове должны находиться средства дезактивации – вода, раствор соды и т. д. Дымящие и летучие жидкости, а также твердые пылящие вещества расфасовывают на открытом воздухе или в специальных вентилируемых помещениях.
При расфасовке многих органических растворителей необходимо принимать специальные меры предосторожности. Дело в том, что, хотя их пары не обладают выраженным раздражающим действием, они весьма токсичны. При переливании же больших количеств растворителей (особенно, если оно производится неаккуратно и без вентиляции) легко может создаться концентрация паров, опасная для здоровья и даже жизни. Использование сифонов при расфасовке таких растворителей, как четыреххлористый углерод, бензол, толуол, нитробензол, пиридин и т. п., является обязательной мерой предосторожности. Работать следует при очень хорошей вентиляции, желательно в противогазе.
Все книги на сайте предоставены для ознакомления и защищены авторским правом