Ибратжон Хатамович Алиев "Все науки. №4, 2023. Международный научный журнал"

Международный научный журнал «Все науки», созданный при OOO «Electron Laboratory» и Научной школы «Электрон», является научным изданием, публикующим последние научные результаты в самых различных областях науки и техники, представляя собой также сборник публикаций по вышеуказанным темам коллегией авторов и рецензируемый редколлегией (учёным советом) Научной школы «Электрон».

date_range Год издания :

foundation Издательство :Издательские решения

person Автор :

workspaces ISBN :9785006039001

child_care Возрастное ограничение : 12

update Дата обновления : 05.08.2023

Аномальный фотовольтаический эффект, обнаруженный для сегнетоэлектриков впервые в [4,5] является частным случаем АФ эффекта, описываемого для кристаллов без центра симметрии тензором третьего ранга ?

[5,6]:

(3)

Согласно (3), при равномерном освещении линейно поляризованным светом однородного кристаллов без центра симметрии (сегнето, пиро или пъезоэлектрического кристалла) в нем возникает фотовольтаический ток J

, знак и величина которого зависят от ориентации вектора поляризации света с проекциями E

E

.

Компоненты тензора ?

отличны от нуля для 20 ацентричных групп симметрии. Если электроды кристалла разомкнуть, то фотовольтаический ток J

генерирует фотонапряжения

где ?

и ?

соответственно темновая и фотопроводимость, l расстояние между электродами. Генерируемое фотонапряжения в кристаллах без центра симметрии порядка (10

—10

). В/см. В соответствии с (3) и симметрией точечной группы кристалла можно написать выражения для фотовольтаического тока J

. Сравнение экспериментальной угловой зависимости J

(b) с (3) позволяет определить фотовольтаический тензор a

или фотовольтаический коэффициент

(a* – коэффициент поглощения света).

В работе [10] определен фотовольтаический коэффициент в кристаллах ниобата лития порядка K = (2—3) ? 10

A?см? (Вт)

.

В настоящей работе сделан обзор и обсуждена фотовольтаическая, оптическая (фоторефрактивная) и звуковая память в кристаллах ниобата лития.

Использование в голографической записи в LiNbO3: Fe дает преимущества. В этом случае запись осуществляется фотовольтаическим эффектом (ФЭ) соответствующей фотовольтаическому току.

Ниобат лития широко применяется в голографии и запоминающих устройствах благодаря своим прекрасным сегнето- и пьезоэлектрическим свойствам. Подобно тому, как магнитные материалы «запоминают» магнитное поле, сегнетоэлектрики в определенных условиях могут «запомнить» электрическое поле.

1. ОПТИЧЕСКАЯ ПАМЯТЬ В КРИСТАЛЛАХ НИОБАТА ЛИТИЯ

Влияние неравновесных носителей на двулучепреломленние сегнето и пьезоэлектрических кристаллах получило в литературе название фоторефрактивного эффекта (ФР эффект) и нашёл широкое использование для регистрации объемных голограмм. ФР эффект заключается в следующем. В результате локального освещения сегнето или пьезоэлектрического кристалла интенсивным проходящим светом (сфокусированным лучом лазера) в объеме кристалла внутри светового пучка имеет место обратимое изменение двулучепреломления, главным образом за счёт изменения показателя преломления необыкновенного луча n

. Величина этого изменение достигает 10

 -10

 для некоторых пироэлектриков (LiNbo

LiTa0

), а время его существования может изменяться в широких пределах, от миллисекунд в BaTiO

до месяцев в LiNbO

. Запись голограммы осуществляется благодаря объемной модуляции значения Dn, соответствующей модуляции записывающего луча. Разрешающая способность записи исключительно высокие, 10

—10

 лин/мм. [7, 9].

Главное преимущество этого метода оптической памяти по сравнению с фотографическими слоями заключается в возможности параллельной записи, считывания и стирания.

Как показано знак, и величина фотовольтаического тока зависит от симметрии кристалла и поляризации света. Фотовольтаический ток приводит к генерации в том же направлении аномально больших фотонапряжений. Таким образом, за время экспозиции t в кристалле возникает макроскопическое поле.

(5)

Благодаря линейному электрическому эффекту поле приводит к ФР эффекту:

(6)

где r

– электрооптические коэффициенты. Уравнение (6) записано в главной системе координат. После освещения поле сохраняется в кристалле длительное время благодаря захвату неравновесных электронов и дырок. Этот механизм захвата ответствен за оптическую память.

Использование в голографической записи в LiNbO3: Fe дает преимущества. В этом случае запись осуществляется фотовольтаическим эффектом (ФЭ) соответствующей фотовольтаическому току. Генерируемое фотонапряжение порядка (10

—10

) В/см ответствен за оптический память в кристаллах LiNbO3: Fe.

Стирание может осуществляться путем отжига кристалла при 170

С. Имеются и другие методы стирания.

2. ЗВУКОВАЯ ПАМЯТЬ В КРИСТАЛЛАХ НИОБАТА ЛИТИЯ

В технике уже довольно давно используют слегка желтоватые монокристаллы ниобата лития LiNbO

. Это удивительно «талантливый» материал: сегнетоэлектрик (его диэлектрическая проницаемость зависит от напряженности электрического поля, температуры и предварительной поляризации). Кристалл содержит особые микроскопические области – сегнетоэлектрические домены, различающиеся по направленности поляризации. Размеры доменов 10

—10

 м, или 0,1—10 мкм. Воздействуя электрическим полем, домены можно перемещать по кристаллу, в сильном поле направление поляризации всех доменов можно сделать одинаковым (кристалл становится монодоменным). При повышении температуры до определенной величины способность поляризоваться и образовывать домены пропадает. У ниобата лития эта температура (точка Кюри) очень высокие составляет 1210°С. Поляризация возникает в результате несовпадения «центров тяжести» положительных и отрицательных зарядов в кристалле, небольшого и согласованного смещения ионов из положения, при котором заряды полностью компенсируют друг друга.

Физики из Университета Миссисипи М. Мак-Ферсон, И. Островский и М. Бризил. изучая прохождение коротких импульсов ультразвука сквозь тонкую пластину ниобата лития (LiNbO3) обнаружили новый физический эффект «звуковой памяти» в кристаллах [11].

Неожиданно ученые обнаружили, что еще один ультразвуковой сигнал с той же частотой и фазой излучается кристаллом спустя семьдесят миллисекунд после прохождения основного импульса. Исследование показало, что громкость «эха» зависит от температуры кристалла и частоты ультразвука. Эффект максимален при 26 мегагерцах и исчезает при температуре выше 75 градусов Цельсия, но при более низких температурах он воспроизводился.

Акустическая причуда ниобата лития может быть связана с его весьма необычнымии крайнем полезными электрическими свойствами: при сжатии он создает электрическое поле. Электрические поля изменяют траекторию проходящего через него света. Поэтому вещество используется в оптоволоконных средствах коммуникации и в голографической памяти.

Каждый кристалл ниобата лития состоит из лоскутков так называемых сегнетоэлектрических доменов. Бризиль подозревает, что частота отложенного эхо, создаваемого кристаллом, связана с размером этих доменов, определяющих пригодность материала для различных целей.

Подобно тому, как магнитные материалы «запоминают» магнитное поле, сегнетоэлектрики в определенных условиях могут «запомнить» электрическое поле. Эта особенность широко используется при изготовлении электромагнитных детекторов и других устройств.

По мнению ученых, он тесно связан со свойствами доменов (областей с одинаковой электрической поляризацией) внутри кристалла и объясняется образованием и последующей релаксацией электрических зарядов вблизи границ доменов.

Эффект пока не нашел надежного теоретического объяснения и нуждается в перепроверке, но уже ясно, что его можно с успехом применять для контроля качества пластин ниобата лития.

Представляется, что ниобат лития хранит звуковую энергию временно. Как это происходит, пока не ясно, но исследователи и мы отмечаем, что звуковая волна сжимает вещество, через которое проходит. Это создает в кристалле электрические поля, которое двигает электрически заряженные атомы, которые содержит кристалл. Когда поступление звука извне прекращается, ионы возвращаются обратно, но не все в одном направлении – движение разделено доменами, определяющими границы, на которых направление изменяется.

По закону сохранение энергии при возвращении ионов они выделяют полученную энергию в виде отложенной акустической волны. Это заставляет каждый домен зазвучать. Более сильное эхо связано с частотой резонанса доменов, которая зависит от их размеров.

Похожие книги


Все книги на сайте предоставены для ознакомления и защищены авторским правом