ISBN :
Возрастное ограничение : 12
Дата обновления : 11.02.2024
§ 1.3. Принцип работы и основные составляющие системы РЧИ
Основной принцип работы РЧИ систем заключается в автоматической бесконтактной идентификации учитываемых объектов при появлении их в рабочей зоне специальных устройств – считывателей радиочастотной идентификации (считывателей РЧИ). Объекты должны быть промаркированы радиочастотными метками, содержащими в себе электронную интегральную схему и антенну. Как правило, интегральная схема метки использует для работы энергию электромагнитного поля, создаваемого считывателем. При этом в отличие от штрихового кодирования, для радиочастотной идентификации не требуется визуальный контакт между считывателем и поверхностью метки. Метка может быть спрятана внутри объекта, например, наклеена на внутренней стороне обложки книги или вклеена в переплёт. Сама книга может быть помещена в коробку, сумку и т. д. Единственным условием для работы системы РЧИ является радио-прозрачность материалов, отгораживающих метку от считывателя.
Каждая радиочастотная метка имеет уникальный код, присвоенный при её изготовлении. Кроме того, метки различных типов могут содержать в себе перезаписываемую память различной конфигурации.
Обязательным условием работы оборудования РЧИ является наличие компьютерной системы автоматизации учетных операций с промаркированными объектами. Фактически, технология РЧИ предназначена для автоматизации информационного обмена между меткой и компьютером. Методика дальнейшего использования этой информации целиком определяется технологией работы предприятия и архитектурой его компьютерной системы. Физические условия взаимодействия считывателей РЧИ и радиочастотных меток также определяются технологическими особенностями производственных процессов, в которых они используются. На различных предприятиях условия использования оборудования РЧИ могут существенно различаться, что требует применения оборудования различных типов, отличающегося своими техническими характеристиками.
Общая структура системы РЧИ показана на рисунке 5 и включает в себя следующие элементы:
1 – управляющий компьютер,
2 – считыватель РЧИ,
3 – рабочая область считывателя РЧИ,
4 – радиочастотную метку.
Рисунок 5 Структура системы радиочастотной идентификации
Управляющий компьютер, работающий по программе, определяющей его функциональное назначение в технологической системе, подает команды на считыватель РЧИ. По команде управляющего компьютера считыватель РЧИ взаимодействует с радиочастотными метками, находящимися в его рабочей зоне. Взаимодействие считывателя и радиочастотной метки в системе РЧИ происходит за счет обмена данными. Для обмена данными с меткой считыватель создает электромагнитное поле в своей рабочей зоне. Размеры рабочей зоны считывателя определяются его мощностью и конструкцией его антенны. Если в рабочую зону антенны считывателя попадает радиочастотная метка, энергия электромагнитного поля на её антенне преобразуется в электрическую энергию, которая обеспечивает работу интегральной схемы метки. Считыватель в небольших пределах изменяет параметры своего электромагнитного поля синхронно с передаваемыми данными (модулирует поле данными). Эти изменения детектируются меткой, дешифрируются её блоком управления и воспринимаются как команды считывателя. Результат выполнения команд передается считывателю также за счет модуляции поля считывателя со стороны метки путем замыкания её антенны синхронно с передаваемыми меткой данными. Таким образом, метка передает данные для считывателя, не излучая энергии. Передача данных от метки происходит за счет манипуляции параметрами электромагнитного поля считывателя. Обмен данными между считывателем и меткой происходит по сложному алгоритму, позволяющему считывателю одновременно работать с несколькими метками в своей рабочей зоне (алгоритм антиколлизии), а также отстраиваться от возможных помех, создаваемых другими электронными устройствами, которые могут оказаться в рабочей зоне считывателя.
§ 1.4. Принцип работы и устройство меток РЧИ
Наибольшее распространение в библиотечных системах автоматизации в настоящее время получили пассивные метки РЧИ, работающие в ВЧ диапазоне (13,56 МГц). Конструктивно такие метки могут быть выполнены в виде пластиковых карт или бумажных самоклеющихся этикеток.
Конструкция пассивной метки РЧИ, выполненной в виде этикетки с клеевым слоем показана на рисунке 6. Метка состоит из бумажного или прозрачного полимерного (ПЭТ – полиэтилентерефталат) лицевого защитного покрытия (1). Под ним располагается полимерный инлей (2) на полимерной (ПЭТ) основе, на котором закреплена интегральная схема (3) и антенна (4). На инлей нанесён клеевой слой (5) из специального акрилового клея. Метки поставляются наклеенными на легко отделяемую подложку (6) изготовленную из силиконизированной бумаги.
Рисунок 6 Конструкция метки РЧИ
Главными конструктивными элементами, определяющими работу метки РЧИ, являются интегральная схема и антенна. Можно сказать, что метка состоит из интегральной схемы, подключенной к антенне. В состав интегральной схемы входит блок управления, энергонезависимая память, радиочастотный блок и модулятор, как показано на рисунке 7.
Антенна метки представляет собой несколько витков электрического проводника, выполненного из меди или алюминия, подключенного к интегральной схеме. Антенна служит для преобразования энергии рабочего поля считывателя в электрический ток, который обеспечивает питание интегральной схемы, и получение данных от считывателя РЧИ.
Радиочастотный блок служит для обнаружения изменений характеристик рабочего поля считывателя РЧИ и преобразования их в двоичные данные, поступающие на блок управления.
Модулятор метки служит для кратковременного замыкания антенны метки синхронно с передаваемыми меткой данными. Такие манипуляции с антенной создают переменную нагрузку на рабочее поле считывателя РЧИ и воспринимаются им как данные, передаваемые меткой.
Рисунок 7 Устройство метки РЧИ
Энергонезависимая память служит для хранения данных, используемых при работе метки в системе РЧИ. Большая часть памяти метки доступна для изменения хранимых данных по командам, получаемым меткой от считывателя РЧИ.
Блок управления служит для интерпретации данных, передаваемых считывателем РЧИ, в команды, их исполнения и формирования данных для передачи считывателю как результата выполнения команд. В процессе обработки команд считывателя блок управления контролирует работу радиочастотного блока, модулятора и энергонезависимой памяти.
§ 1.5. Принцип работы и устройство считывателей РЧИ
Считыватель РЧИ представляет собой микропроцессорное устройство, имеющее в своем составе радиочастотный блок и антенну, как показано на рисунке 8. Считыватель подключен к компьютеру через стандартный канал связи, обычно это компьютерный USB порт.
Антенна считывателя конструктивно аналогична антенне метки, но может иметь больший размер. Конкретный размер антенны определяются технологическим предназначением считывателя и конструкцией его корпуса. Антенна служит для создания рабочего поля (для считывателей ВЧ диапазона это магнитное поле) энергия которого используется метками для работы.
Радиочастотный блок считывателя служит для формирования высокочастотных электрических сигналов, преобразующихся в энергию рабочего поля. Кроме того, радиочастотный блок формирует изменения рабочего поля считывателя синхронно с передаваемыми для меток данными. В режиме приема он преобразует изменения рабочего поля, производимые метками, в данные, формируемые метками в процессе работы системы РЧИ.
Микропроцессорный блок служит для преобразования команд, получаемых от управляющего компьютера в последовательности команд, передаваемых меткам РЧИ, находящимся в поле считывателя. В результате выполнения команд управляющего компьютера осуществляется обмен данными между системой автоматизации РЧИ и метками с целью идентификации маркированных метками объектов.
Рисунок 8 Устройство считывателя РЧИ
Интерфейсный модуль связи с компьютером служит для получения команд от управляющего компьютера и обмена данными в процессе работы системы РЧИ. Считыватели различных типов могут иметь различные интерфейсные модули. Наиболее распространенным интерфейсом является USB-порт компьютера, к которому считыватель подключается по кабелю. Некоторые типы считывателей могут иметь сетевой интерфейс и осуществлять обмен данными с компьютером по сетевым протоколам TCP/IP. Кроме того, связь считывателя с компьютером может осуществляться через беспроводные интерфейсы Wi-Fi или Bluetooth.
Более подробную информацию об устройстве и принципах работы систем радиочастотной идентификации можно найти в работе Богатырева Е. А. «RFID-системы: основы построения, функционирования и применения» [3].
Заключение
Технология РЧИ появилась как результат развития радиотехники и радиоэлектроники. Теоретические основы технологии были заложены в 1920–40-х гг. Первые устройства РЧИ появились и начали применяться на практике в конце ХХ в., но их широкое распространение началось в конце 1990-х – начале 2000-х гг. в связи с появлением микроэлектронных устройств. Принцип работы РЧИ систем основан на автоматической идентификации объектов, маркированных РЧИ метками, при их попадании в рабочую зону РЧИ считывателей. Существуют различные виды РЧИ оборудования. В зависимости от вида устройств РЧИ, они обладают существенно разными характеристиками, определяющими конкретные области их применения. Наибольшее распространение в библиотечных системах автоматизации получило оборудование РЧИ, работающее в ВЧ диапазоне радиоволн, использующее пассивные РЧИ метки, не имеющие источника питания, использующие для работы энергию поля, создаваемого РЧИ считывателем в рабочей зоне и выполненные в виде этикеток с клеевым слоем.
Контрольные вопросы к главе 1
1. Развитие каких областей знания привело к появлению технологии РЧИ?
2. Изобретение каких устройств стало предпосылками к появлению РЧИ?
3. Какие основные виды устройств РЧИ существуют в настоящее время?
4. Какие виды устройств РЧИ используются сегодня в библиотеках?
5. Какие основные составляющие элементы системы РЧИ?
6. На каком принципе основана передача данных от считывателя к метке и от метки к считывателю?
7. Из каких основных функциональных элементов состоит метка РЧИ?
8. Из каких основных функциональных элементов состоит считыватель РЧИ?
9. Каково основное предназначение системы РЧИ?
10. Каковы основные преимущества технологии РЧИ в сравнении с технологией штрихового кодирования?
Глава 2. НОРМАТИВНАЯ БАЗА ТЕХНОЛОГИИ РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ
Введение
Роль стандартов в развитии любого вида деятельности заключается в закреплении накопленного опыта в виде общепринятых правил, выполнение которых способствует его дальнейшему развитию. В полной мере это относится и к технологии радиочастотной идентификации.
В этом разделе представлена нормативная база применения технологии РЧИ в библиотеках. Показаны исторические предпосылки появления первых стандартов и современное состояние стандартизации в области РЧИ. Показаны и даны характеристики основных систем стандартов, определяющих работу устройств РЧИ. Приведены основные положения стандартов, регламентирующих применение РЧИ оборудования в библиотеках. Так же, изложены основные требования со стороны государственных контролирующих органов к применению устройств РЧИ на территории Российской Федерации на использование частотных диапазонов и условий излучения электромагнитных волн, а также на соответствие установленным санитарным нормам.
§ 2.1. История появления стандартов РЧИ
Основы технологии радиочастотной идентификации закладывались в 30–40-е гг. ХХ в., но только в 90-е гг. началось её бурное развитие, что было обусловлено успехами в развитии цифровой техники и микроэлектроники. Отсутствие общепринятых правил обмена данными между устройствами РЧИ и прикладными технологическими системами на начальном этапе стало причиной появления на рынке множества различных видов оборудования – считывателей и меток РЧИ. Использование оборудования РЧИ с различными характеристиками приводило к несовместимости и низкой повторяемости прикладных технических решений с использованием оборудования от разных производителей. Все это сдерживало развитие технологии РЧИ и ограничивало масштабность проектов её внедрения.
Принято считать, что начало развития технологии РЧИ в современном её понимании было положено учеными из Массачусетского технологического института (США), которые в конце 90-х гг. занялись разработкой стандартов, необходимых для широкого применения РЧИ на практике. Применение стандартных подходов позволяло снизить стоимость микросхем для меток за счет их массового производства. Это делало технологию РЧИ доступной во многих областях. Финансовую поддержку этого проекта оказывала организация «Uniform Code Council, Inc.» (Некоммерческая организация США по стандартам идентификации продукции и средств электронных коммуникаций. В 2005 г. вошла в GS1). В 1999 г. в рамках проекта был открыт специализированный научный центр «Auto-ID Center» в Кембриджском исследовательском центре Массачусетского технологического института, затем появились аналогичные центры при университетах Англии, Китая, Кореи, Японии, Швейцарии, Австралии. В 2003 г. «Auto-ID Center» был преобразован в научное объединение «Auto-ID Labs», которое, совместно с созданной организацией «EPC Global», продолжило развитие и стандартизацию технологии РЧИ в системе стандартов EPC (Electronic Product Code). В настоящее время развитием стандартов EPCGlobal занимается международная некоммерческая организация GS1, образованная в 2005 г. на базе международной ассоциации EAN, в которую вошла «EPC Global».
В настоящее время стандарты EPC широко используются для производства СВЧ оборудования РЧИ, широко применяемого в области складской и транспортной логистики.
Еще одно направление в области стандартизации средств РЧИ связано с такими организациями как Международная организация по стандартизации (ИСО) и Международная электротехническая комиссия (МЭК). В 1987 г. ими был образован Совместный технический комитет ИСО/МЭК ОТК1 «Информационные Технологии», в рамках которого в 1996 г. был создан Подкомитет ПК31 «Автоматическая идентификация и технология сбора данных», в котором были разработаны первые стандарты, упорядочивающие технические характеристики различных устройств РЧИ и методы их применения.
Первый международный стандарт, описывающий параметры радиоканала и протокол обмена данными между считывателем и пассивной меткой РЧИ был принят Совместным техническим комитетом СТК1 ИСО/МЭК в 2000 г. Стандарт ИСО/МЭК 15693 [4] определяет условия использования и технические характеристики для идентификационных карт РЧИ удаленного действия, работающих на частоте 13,56 МГц. Карты этого типа имеют сравнительно большую дальность считывания, до 1 м. Действие стандарта также распространяется на радиочастотные метки на бумажной основе для маркировки учетных единиц и их автоматизированной идентификации.
Следующим международным стандартом, разработанным СТК1 стал ИСО/МЭК 14443 [5], который определил технические характеристики для карт РЧИ ближнего радиуса действия, с малой дальностью чтения и большими скоростями обмена данными. Стандарт определяет работу семейства карт, разработанных компанией «NXP Semiconductors» под торговой маркой «Mifare». В семейство входят карты ряда типов, отличительной особенностью которых является наличие сравнительно большого объема встроенной памяти, защищенной средствами криптозащиты. Карты этих типов находят применение преимущественно в системах бесконтактной оплаты.
В дальнейшем основные положения стандартов ИСО/МЭК 15693 и ИСО/МЭК 14443 вошли в стандарт ИСО/МЭК 18000, который появился позднее. В настоящее время эти стандарты являются действующими и являются базовыми для стандартов прикладного уровня в области РЧИ.
§ 2.2. Общая нормативная база РЧИ
2.2.1. Система стандартов ИСО/МЭК 18000
Стандарты ИСО/МЭК 18000, под общим названием «Информационные технологии. Радиочастотная идентификация для управления предметами», сегодня являются базовыми для всех видов устройств РЧИ. Первая версия стандартов была принята в 2004 г. Стандарты получили широкую, хотя и не всеобщую поддержку со стороны производителей оборудования РЧИ. Сегодня эти стандарты представлены 6 частями [6], определяющими работу РЧИ устройств в различных установленных частотных диапазонах. В настоящее время стандарт состоит из 6 частей с номерами от 1 до 7, с пропуском 5 части.
Первая часть стандарта является общей для всех остальных и определяет положения, применяемые во всех стандартах группы.
Вторая часть стандарта определяет работу систем РЧИ с пассивными метками, работающих в НЧ диапазоне 135 кГц. Метки этого диапазона имеют очень малое расстояние считывания, обычно не превышающее один сантиметр, и преимущественно используются в виде карт в системах контроля и управления доступом (СКУД) для оборудования автоматизированных шлагбаумов, турникетов и т. д. В настоящее время карты этого диапазона выходят из употребления и замещаются картами, определяемыми третьей частью стандарта.
Третья часть стандарта определяет работу систем РЧИ с пассивными метками, работающих в ВЧ диапазоне 13,56 МГц. Дальность считывания меток этого диапазона лежит в пределах 1 м, они предназначены для работы в системах логистики, на транспорте и в системах бесконтактной оплаты. В стандарте определены три типа систем независимых и несовместимых друг с другом:
– Тип Mode 1 соответствуют меткам стандартов ИСО/МЭК 15693 и ИСО/МЭК 14443. Метки этого типа сегодня являются самыми востребованными в ВЧ диапазоне и широко используются в системах РЧИ, в том числе и в библиотечных системах автоматизации.
– Тип Mode 2 на сегодняшний день не нашел применения у производителей оборудования РЧИ.
– Тип Mode 3 соответствует стандарту организации GS1 для меток типа «EPC Class 1 HF». В настоящее время разработка систем РЧИ на базе меток типа Mode 3 является перспективным направлением, но пока слабо поддержанным разработчиками оборудования и систем РЧИ.
Четвертая часть стандарта определяет работу систем РЧИ с пассивными метками, работающих в МВЧ диапазоне 2,45 ГГц. Дальность считывания меток этого диапазона может достигать 150 м. Метки этого типа обычно применяются в системах локальной навигации и локального позиционирования.
Шестая часть стандарта определяет работу систем РЧИ с пассивными метками, работающих в СВЧ диапазоне 860–960 МГц. Дальность считывания меток этого диапазона находится в пределах десяти метров, они предназначены для работы в системах логистики, на транспорте. В шестой части стандарта выделено пять разделов, объединенных общим названием: «Параметры радиоинтерфейса для диапазона частот 860–960 МГц». Первый раздел определяет общие требования к СВЧ системам РЧИ. Последующие четыре раздела определяют четыре независимых типа систем: A, B, C и D. Метки типа C соответствуют стандарту организации «GS1» для меток «EPC Class 1 Generation 2» (EPC Cl1g2). В настоящее время это самый распространенный в мире тип меток, применяемых в системах автоматизации на базе РЧИ в области складской и транспортной логистики.
Седьмая часть стандарта определяет работу систем РЧИ с активными метками, работающих в СВЧ диапазоне 433 МГц. Дальность считывания меток этого диапазона достигает 100 м, они применяются в системах логистики для маркировки контейнеров и возвратной тары.
Все книги на сайте предоставены для ознакомления и защищены авторским правом