Екатерина Кукина "Века сквозь математику, или Как математики раз за разом мир вертели"

Каждая книга возникает почему-то и зачем-то.Почему эта книга? Автор книги в течение 5 лет читала студентам математического факультета гуманитарный курс под названием "История математики в контексте истории культур". Ей нравилось. Студентам тоже.Зачем эта книга? Чтобы читателям тоже понравилось.Чтобы читатели заинтересовались математикой, заинтересовались историей, поняли, насколько же много исторических фактов никогда не приходитв голову историкам, увлеченным перестановкой на шахматной доске эпох фигурок королей, полководцев и президентов с их многочисленными армиями. Чтобы читатели поняли, что математика тоже влияет на ход истории. (Ну, собственно, как и физика, химия, компьютерные науки, а также любые другие науки вообще! Да наверняка, и история (наука) влияет на ход истории (времени) – но автор данной книги не возьмется этого утверждать, так как не является историком.)

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 12.04.2024

И – возможно, высшее достижение египтян в геометрии – с помощью натянутой веревки они умели строить прямые углы. Берем 12 одинаковых по длине веревок. Связываем между собой. Затем натягиваем так, чтобы получился треугольник со сторонами 3-4-5. Угол между 3 и 4 будет прямым. Правильным углом для постройки пирамиды.

Больше ничего геометрического с помощью каких-либо приборов египтяне не строили. Никогда ничего египтяне не доказывали. Собственно, вся египетская математика сводилась к громоздким арифметическим вычислениям – но и это уже не мало!

2.2

Древняя Месопотамия

Древняя Месопотамия, древний Вавилон, древние шумеры – речь идет примерно про одну и ту же географическую область, Междуречье (между двумя великими реками, Тигром и Евфратом), в основном эта область находится на территории современного Ирака. Область, которая на протяжении более, чем тысячелетия была ключевой в развитии (европейской) культуры. Именно здесь зародилась /*или, по крайней мере, так считается*/ первая письменность (шумерские глиняные таблички, на которых трехгранными клинышками высекали необходимые письмена). И здесь же были сделаны одни из первых математических открытий, известных нам сейчас. Математика (особенно, арифметика) древних вавилонян была на голову выше, чем математика древних египтян.

Математикой в Вавилоне занимались опять писцы, которые были в отличие от египтян, скорее не чиновниками, а жрецами, людьми духовными. Впрочем, в те времена, когда египетские фараоны приравнивались к богам, различие это было ускользающе малым. Найденные глинобитные дощечки с математическими знаниями также, как и в Египте, носят обучающий характер. А иногда – это явные "справочники" для вычислений, таблицы.

Эти самые глинобитные дощечки встречаются разных размеров. Бывают многометровые, явно обломанные (т.е. раньше было больше). А бывают размером чуть ли не с ноготь /*может, это шпоры?*/. В основном же – около одной странички.

Рисунок 2.4: Глиняная табличка Plimpton 322, содержит то, что позже назовут "пифагоровы тройки чисел".

Как древние шумеры считали? В записи чисел шумеры использовали более прогрессивную – позиционную – запись числа (т.е. значение знака зависит от его позиции). Записывали они в 60-ричной системе счета. Числа до 60 записывались в обычной 10-ной системе (1 – один "клинышек", 10 – один "уголок"). Но число 60 снова обозначается как 1 (большая единица), и счет начинается снова. Иногда цифру более высокого разряда писали крупнее, но это уж как получится. Таким образом, "уголок" может означать как 10, так и десять шестидесяток, т.е. 600. Может означать и 1060

,1060

,… В том числе, не только положительные, но и отрицательные степени записывались также. , т.е. записывается так же, как 10, одним "уголком". (Числа писали как мы, младшие разряды справа, старшие слева).

Например, 11 записываем "уголок-клинышек". А "клинышек-уголок" это уже значит, что "клинышек" выше разрядом, поэтому "клинышек-уголок" это 70.

Вся прелесть позиционной системы в том, что не надо выдумывать много цифр. Шумеры вот двумя символами обходились на все про все.

Для нас нет большой разницы, умножать 28 на 17, 280 на 17000 или же 2,8 на 0,17. (Надо только сообразить, куда ставить запятую или сколько приписывать нулей – т.е. надо понять порядок числа). Так же и для шумеров большой разницы не было. Правда, они использовали таблицу умножения от 1 до 59. /*Но вы же помните, что последние 10 тысяч лет объем мозга человека постоянно уменьшается? Каких-то 5 тысяч лет назад все грамотные люди держали в своей голове таблицу умножения 5959, сейчас же нельзя с уверенностью сказать, что современные люди помнят наизусть 78.*/

Вопрос с порядком числа в практических задачах обычно решается из контекста. Если мы говорим: "Я ее купил за 10", – то в зависимости от контекста (сумочка это, авторучка или квартира), мы понимаем, идет ли речь о тысячах рублей, рублях или миллионах. Так же вместо "2 324 рубля 35 копеек" мы, скорее всего скажем "Две-324-35", без указания разряда (тысячи), без добавления слов "рубли"/"копейки". Сложности с порядком чисел могли бы возникнуть в теоретических задачах, но их-то и не было!

Почему именно 60 основание системы счисления? Число уж больно удобное. Делится и на 2, и на 3, и на 4, и на 5, и на 6. И поэтому у вавилонян была именно такая денежная система. В одном таланте 60 мин. В одной мине 60 шекелей. Удобно делить деньги.

Именно остатки 60-ричной вавилонянской системы до сих пор присутствуют в нашем счете времени. В одном часе 60 минут. В одной минуте 60 секунд. То же и с углами (просто между углами и временем связь вообще напрямую).

Обратите внимание: древние египтяне писали натуральные числа, даже дробные числа, но никогда не писали 0. Вавилоняне тоже писали и натуральные числа, и дробные числа, но ни о каком "числе 0" они ничегошеньки не знали. Спустя тысячу лет после первых математических текстов они, наконец, сообразили, что хорошо бы в числе пропущенный разряд как-то обозначать. И спустя тысячу лет после первых математических изысканий, придумали значок, обозначающий пропущенный разряд. Придумали 0-цифру, но все еще не 0-число. (Теперь стало можно отличать 60

от 60

или же 60

+ 2 от 60

+ 2 · 60 и так далее).

/*Ноль – очень сложное число. Запомните эту мысль, она нам еще, возможно, встретится. Вычислять приближенно квадратные корни? Да легко! Решать в уме квадратные уравнения – дайте два. А вот до числа 0 не додумались ни египтяне, ни вавилоняне, ни позже древние греки, ни в средневековых арабских странах, где математика была на очень высоком уровне. Ноль в математике возник немногим ранее комплексных чисел! */

Рисунок 2.5: Реплика глиняной вавилонянской дощечки, выполнена студенткой Кравцовой Настей, слушавшей у меня курс «История математики в контексте истории культур»

Вавилоняне не делили числа. Когда надо было выполнить действие , они искали обратное к b и умножали его на a. Таблицы обратных чисел и таблицы умножения – доступны. Когда число не делилось нацело, пользовались его приближенными значениями. Например, это точное значение (здесь я в скобках записала одну вавилонянскую

60-ричную "цифру"). А это приближенное значение, но вполне хорошее приближение (, a . Погрешность менее 1%).

Что еще делали, кроме четырех основных арифметических операций? У вавилонян была таблица квадратных корней, таблица кубических корней, и (внезапно!) таблица корней уравнения x

+x=a. И всякие другие таблицы. Таблицы они вообще очень любили.

Но самое интересное: у вавилонян явно появились первые алгоритмы. Например, алгоритм вычисления корня из любого числа.

Предположим, нам надо вычислить . Если первое приближение корня мы взяли a

, то (теоретически, если мы попали в цель) должно быть равно a

. На деле, эти числа разные (одно больше, другое меньше, чем ). И мы берем два числа a

и и ищем между ними среднее арифметическое. Это второе приближение a

. Если оно опять не идеальное (т.е. разница между a

и велика), можно также найти третье приближение и т.д.

Ясно, что где-то от 1 до 2, возьмем первое приближение . Тогда . И второе приближение числа Что уже очень близко к реальному значению . Третье приближение, полученное таким алгоритмом отличается от реального значения в 6 знаке после запятой! Отличный алгоритм.

Существовал у вавилонян и алгоритм для решения квадратных уравнений (в целом повторяющий известную нам формулу для их вычисления).

А что с геометрией? Геометрия у вавилонян – целиком прикладная алгебра. Иногда задачи (вроде бы геометрические) не носили никакого смысла. В них складывали площадь с периметром, диагональ с объемом и т.д.

Никаких доказательств или построений не было. Только приближенные вычисления. Однако же приближения были с высокой точностью. Поэтому несмотря на то, что правильных формул вавилоняне не знали, здания они строили крепкие (в том числе и знаменитые зиккураты, представляющие собой несколько усеченных пирамид, взгроможденных одна на другую).

Площадь круга считали как 3r

, длину окружности как 6r (т.е. считали ?=3).

Объемы призмы, цилиндра вычисляли умножая площадь основания на высоту (правильная формула). А вот формулу для вычисления, например, объема усеченной пирамиды использовали неправильную (полусумма площадей оснований на высоту).

Есть свидетельства того, что вавилоняне знали тот факт, что численно сумма квадратов катетов равна квадрату гипотенузы (т.е. теорему Пифагора). Но это не точно.

Итак, никаких доказательств в те древние времена еще не было. Никаких задач на построение тоже не было и в помине. Вавилоняне и египтяне занимались математикой практически параллельно, нет никаких свидетельств, что в те эпохи они каким-либо образом обменивались знаниями (обмен знаний начался позже, в эпоху господства Древней Греции). Доказательства существования вавилонянской математики несколько старше (от 2,5 тысяч лет до нашей эры), египетской чуть моложе (от 2 тысяч лет до н.э.). В решении разного рода вычислительных задач вавилоняне были куда круче египтян, но тем надо отдать должное: они придумали такую странную систему вычислений, что хоть стой, хоть падай. Однако, в геометрии точнее были египтяне.

Какие книги можно еще почитать.

К главе 2 про Древний Египет и Месопотамию.

[7]

Ван дер Варден, Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. – М.: Гос.изд-во физ.-мат.лит-ры, 1969.

/*Самая классная книга по истории математики античного периода. Сам автор – математик. В книге много математических подробностей. Как раз очень подходящая книга для всех, кому не хватает математических подробностей у меня.*/

[8]

В. Прасолов, История математики. Часть 1. – М.: МЦНМО, 2018.

/*Очень современная книга, которая пишется до сих пор. Это настоящий учебник, но Виктор Васильевич в принципе не умеет писать плохо и скучно. Вышла только первая часть (по-моему), но вообще у автора планов громадье, и книга публикуется в сети по мере ее написания.*/

[9]

О. Нейгебауэр, Точные науки в древности. – М., Наука, 1968.

/*Хорошая книга, но намного более устаревшая, чем Ван дер Варден. Мне пришлось ее прочитать, когда я в свое время готовилась к курсу лекций, но, по-моему, [7] хватает.*/

[10]

под ред. А. П. Юшкевича, «История математики с древнейших времен до начала XIX столетия» в 3 томах, т.1. – М.:Наука, 1970.

/*Учебник по истории математики. В нем про есть про все подряд, но и про Древний Египет и Междуречье тоже.*/

Лекция 3.

Древняя Греция

Глава, в которой математика, наконец, появляется.

Рисунок 3.1: Фреска "Афинская Школа" Рафаэля Санти. Ватикан.

От математиков Египта и Междуречья до нас дошли только примеры решенных задач. В Древней Греции, наконец, мы видим появление математической науки. В чем разница? В математике появляются доказательства. Пока в математике нет доказательств, наукой она не считалась. Ремеслом, занятием, вспомогательным инструментом – да, может быть, но не наукой. Этот важнейший перелом, скачок на новый уровень, когда количество накопленных математических знаний (зачастую противоречивых) переходит в качество, случился приблизительно на рубеже VI и V веков до нашей эры.

3.1

Фалес. Начало.

Все книги на сайте предоставены для ознакомления и защищены авторским правом