Екатерина Кукина "Века сквозь математику, или Как математики раз за разом мир вертели"

Каждая книга возникает почему-то и зачем-то.Почему эта книга? Автор книги в течение 5 лет читала студентам математического факультета гуманитарный курс под названием "История математики в контексте истории культур". Ей нравилось. Студентам тоже.Зачем эта книга? Чтобы читателям тоже понравилось.Чтобы читатели заинтересовались математикой, заинтересовались историей, поняли, насколько же много исторических фактов никогда не приходитв голову историкам, увлеченным перестановкой на шахматной доске эпох фигурок королей, полководцев и президентов с их многочисленными армиями. Чтобы читатели поняли, что математика тоже влияет на ход истории. (Ну, собственно, как и физика, химия, компьютерные науки, а также любые другие науки вообще! Да наверняка, и история (наука) влияет на ход истории (времени) – но автор данной книги не возьмется этого утверждать, так как не является историком.)

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 12.04.2024


Над входом в Академию Платона висел слоган «Не знающий геометрию – не войдет!» Более того, во все времена существования Академии, этого слогана, безусловно придерживались. /*Ах, как было бы хорошо, если бы подобный слоган был руководством к действию в современных вузах. Ну, или хотя бы на математических факультетах!*/

Когда мы говорили о Пифагоре, мы обсудили, что математика родилась в учении Пифагора из философии и религии. Теперь, при Платоне, 100 лет спустя, работает много профессиональных математиков (людей, у которых основное занятие в жизни – доказывание теорем). Многие из них – вовсе не пифагорейцы, просто им нравится математика. И вот теперь, когда математика уже хорошо развита, математика начинает влиять на философию, на мировоззрение.

Для лучшего понимания философских идей Платона, никак невозможно обойтись без его учения о идеях. Лучше всего, конечно же, читать "Миф о Пещере" в Диалогах Платона [19], но я кратенько перескажу.

Представим себе людей, которые прикованы в темной пещере, и смотрят на освещенную стену. Они не могут шевелиться и видят только стену. За их спиной проносят реальные предметы, которые отбрасывают

стену тени. И люди способны увидеть и познать только лишь эти тени, реальные предметы – вне поля их зрения. Очевидно, если человек выйдет из Пещеры на яркий свет, ему будет плохо и дискомфортно. Но если он пересилит себя, и останется на свету, постепенно он поймет, что ему хорошо, а плохо было раньше, прикованным в пещере, во тьме. И человек узнает, что знал не настоящие вещи, а лишь их тени. Но если он вернется в пещеру и начнет рассказывать, что тени – всего лишь тени, ему не поверят. И на свет с ним идти, возможно, не захочет никто.

Ну, так вот. Платон считал, что мы все, подобно тем узникам в пещере. А настоящий, большой мир – это мир идей. Идея предмета – реальная, настоящая, первичная. Есть много животных, которых мы можем назвать Кошка. Но это ненастоящие кошки, это лишь тени одной, настоящей идеальной кошки (кошки-идеи) из мира идей. (Так на примере котиков объясняет Бертран Рассел философию Платона).

Это очень математичная идея. Мы можем соорудить в жизни куб? Можем, конечно. Но углы у него будут не четко

, длины сторон чуть-чуть, да отличаться, да и в целом будут немного не ребра, а закругления на стыке граней. Этот куб не будет идеальным кубом. Но есть куб-идея. Идеальный куб. И математики никогда не исследуют материальный куб. Они всегда исследуют куб-идею (у которого все углы ровно

, ребра все с бесконечной точностью равны и т.д.) А исследования этого идеального куба приводят нас к выводам о его бледных подобиях в окружающем нас мире – кубах материальных.

По мнению Платона, после смерти души людей попадают как раз в Мир Идей. И чьим же душам лучше всего? Душам Мудрецов. Эталон истинного Мудреца обладает у Платона определенными качествами: бесконечная любовь к размышлениям, благожелательность, равнодушие к чувственным удовольствиям, внутреннее спокойствие и обязательное отсутствие страха смерти (ведь после смерти ты попадаешь в лучший мир – из Пещеры к Свету). Близко к идеям христиан, только содержит дополнительный интеллектуальный элемент (который не нужен христианам в их религии).

Платон считает, что любое знание – это припоминание. Душа человека вне кратких мигов своей земной жизни (как после нее, так и до нее – душа вечна-бесконечна) живет в Мире Идей. Таким образом, душа при рождении знает все идеи, только забывает их от шока, попадая в наш мир. Поэтому Платон относится к знанию как к припоминанию. (По этому поводу можно почитать его диалог "Менон" [19], где он это наглядно показывает).

В математике имя Платона присвоено одному примечательному объекту (точнее будет сказать, набору объектов) – Платоновым телам. Платоновы тела – это правильные многогранники. Вот правильных многоугольников бывает бесконечно много. Правильный треугольник (он же равносторонний), правильный четырехугольник (он же квадрат), правильный пятиугольник и далее любой правильный n?угольник (все они существуют). А вот правильных многогранников (т.е. таких объемных тел, у которых все ребра равны, все грани равны, все углы равны (как плоские, так и двугранные) – ну, короче, всех таких из себя правильных) таких многогранников существует всего-то пять штук!

Почему они названы именем Платона, не очень понятно. На самом деле, три из пяти правильных тел были точно известны еще Пифагору. А оставшиеся два открыл современник Платона математик Теэтет (и он же первый доказал, что их ровно пять, и больше не бывает). Теэтет открыл и доказал, а назвали именем Платона. Возможно потому, что Платон написал о них в своем диалоге "о природе" (а отсюда уже знание о них распространилось; художественную литературу все же читают намного чаще, чем специальную математическую). Может, это не честно, но уж как есть. Это называется "исторически сложилось".

Теэтет вообще был классный математик. Его еще называют создателем геометрической теории чисел. Например, он придумал, как геометрически показывать Алгоритм Евклида. Или доказал, что если квадратный корень (из целого числа) – не целое число, то и не рациональное тоже. (Это очень круто. Если вы знаете эту теорему Теэтета и, например, умеете доказывать, что , но при этом – вы доказали, что 101 – иррациональное число). Похоже, что и основную теорему арифметики (про то, что каждое число раскладывается в произведение простых, причем, однозначно), первым доказал тоже Теэтет! Вот такой был замечательный математик, а его имя почти кануло в летах. /*Вот признайтесь, правда ведь, что вы про Платона раньше знали, но думали, что он математик, а про Теэтета – даже не слышали? Хотя, возможно, вы сами математик, тогда вам простительно!*/

Представьте, насколько современную литературу писал для своего времени Платон? Открыли теорему о платоновых телах – он сразу их включил в свои "Диалоги". Причем, Платон всегда включал в свои диалоги математику очень по существу и со знанием дела. Однако же, сам математиком не был. Все-таки, он считал математику – путем к мудрости, но не ее вершиной. Частным случаем. Особенно ему не нравилось неистребимое желание математиков делить программу на подпрограммы (то есть, тьфу, великую, большую, красивую задачу на какие-то мелкие ничтожные подзадачи). Вершиной же всего-всего Платон считал еще более оторванные от реальности размышления – философию.

Лекция 6

.

Евклид. Начала.

Рисунок 6.1: Страница из первого печатного издания «Начал», 1482 год

Венцом древнегреческой математики считается книга, написанная Евклидом, под названием «Начала». Сейчас бы такую книгу назвали «Начала математики», «Начала геометрии», ну начала чего-то ведь! Но Евклид был скромным, и уточнять, Начала чего, не стал.

По количеству переизданий и выпущенных за всю историю копий, Начала Евклида не имеют себе равных среди светских (нерелигиозных) книг. Годом изобретения книгопечатания (в Европе) считается 1445 год и первым делом была напечатана, конечно, Библия (потом Псалмы и т.д.). Но первое издание «Начал» не заставило себя долго ждать, и вышло в 1482 году (это очень быстро!). Кстати сказать, до Библии массово печатались только две вещи: религиозные гравюры и игральные карты ))))

Так вот, тут есть некий исторический парадокс. «Начала» Евклида сохранились идеально! (они написаны примерно в 300 году до н.э. и до их первого печатного издания переписывались и переписывались от руки. Гуляли по странам, континентам и частям света, чтобы вновь вернуться в Европу – но текст исходных «Начал» при этом сохранился! (Плюс иногда добавлены ценные комментарии, но которые сами оформлены именно как комментарии). При том, что про книгу хорошо все известно, никто не знает, когда же жил ее автор, Евклид! И не только "когда", а вообще, про него очень-очень мало что известно. /*Как же хорошо, что с тех пор изобрели интернет! Теперь про всех всем всё известно.*/

Евклид жил в Александрии (территория современного Египта), и был очень книжным человеком. Малообщительным. Прокл в своем комментарии указывает, что Евклид должен был жить во времена Птолемея I (это египетский царь, а про царей гораздо лучше сохранилось все в истории, чем про ученых). Вот, собственно, это мы и знаем о Евклиде.

Комментарий Прокла, кстати, мы с вами уже упоминали (именно в нем возникает имя Фалеса как отца математики). Кроме того, в своем комментарии Прокл делает краткий экскурс в историю древнегреческой математики с момента возникновения (Фалеса) до момента написания книги.

В своих «Началах» Евклид постарался собрать всю известную на тот момент математику. По большей части ему это удалось. В «Началах» 13 книг. Первые 6 – это планиметрия. Затем четыре книги – арифметика и немного алгебра, которые излагаются по большей части на геометрическом языке. Последние три главы – стереометрия.

Если раньше мы уже говорили, что шумеры и египтяне занимались геометрией как прикладной арифметикой, то греки делают все совершенно наоборот. Всю арифметику, алгебру и теорию чисел стараются греки облечь в геометрическую формулировку. Например, как формулируется иррациональность числа ? Всегда только так: "диагональ квадрата несоизмерима с его стороной" (несоизмерима – это и означает, что никак с помощью стороны измерить нельзя. Не находится со стороной ни в какой приличной пропорции).

Вавилоняне ничтоже сумняшеся складывают площадь квадрата с его периметром. Греки никогда такой вольности не допустят, ведь площадь и периметр – это не числа для них, а разные сущности. Число греки не называют числом не потому, что не знают иррациональных чисел, а потому что в их определении под словом "число" подразумеваются только натуральные числа. Рациональные числа в их терминологии – "отношения (чисел)" (рацио). А иррациональные? Это странные сущности, не являющиеся рациями. Когда вавилоняне не могли найти точное значение, они заменяли его приближением – и на этом все. Греки всегда искали

точное значение.

Рисунок 6.2: Страница из рукописного экземпляра "Начал", IX век н.э.

/*С тех пор у математиков принято именно так. Мы знаем приближенные значения чисел, но мы не отождествляем их с этими числами. Математик скорее откусит себе язык, чем скажет, что "? равно 3.14". Скорее всего, математик не будет уточнять, скажет просто ?. Если очень попросите, то скажет, что "? примерно равно

3.14".

Но самый настоящий математик вам этой информации не выдаст и до последнего на вопрос: "Так чему же равно ??" – даже под страхом смерти будет настаивать на том, что ? равно отношению длины окружности к ее диаметру (и конечной или периодической десятичной дробью не выражается).*/

«Начала» практически до конца XIX века считаются образцом логических построений и предельной четкости изложения. Именно по образу и подобию начал строят свои книги Декарт, Ньютон, Спиноза (не только труды математические, но и труды философские), а также практически все математики с тех времен.

Сначала идут определения. Например, определение окружности и круга, тупого, острого, прямого угла и т.д. Потом идут так называемые "Постулаты" (пять знаменитых постулатов Евклида нам позже встретятся в главе «Что такое неевклидовы геометрии?»), аксиомы. Постулаты – это высказывания, которые не нуждаются в доказательствах. Постулируется (допускается), что такие-то и такие-то утверждения верны. И из этих утверждений выводятся разные теоремы. Если мы изменим постулаты, то сможем выводить совершенно другие теоремы (Евклид этого еще не знал, но уже догадывался, перед постулатами он написал: "Допустим, что...."). Аксиомы – это тоже высказывания, не нуждающиеся в доказательствах, но обычно аксиомы не подлежат сомнению. Не подлежат смене. Собственно, слова "аксиома" и "постулат" – синонимы. Но в геометрии ("так исторически сложилось" – смешная фраза, но уж как есть) принято отделять аксиомы и постулаты.

У Евклида к аксиомам отнесены как бы общематематические вещи (например: "равные одному и тому же равны между собой" – это, скорее, относится не к геометрии, а к определению слова "равны"; или "Половины одного и того же равны между собой" – а это тоже, скорее, не аксиома, а определение слова половина. Ну, и т.д.), а к постулатам уже вещи сугубо геометрические: "две любые точки можно соединить прямой", "из всякого центра и всяким раствором может быть описан круг" и т.д.

У Евклида как излагаются определения, постулаты, так же и теоремы, но и разобрано много задач с решениями. Очень много среди них – задачи на построение чего-либо циркулем (правда, под циркулем Евклид понимал что-то чуть-чуть другое) и линейкой.

/*Всем, кто хочет почувствовать себя Евклидом, я крайне рекомендую игру, которая называется Euclidea (https://www.euclidea.xyz/). Очень сложная, но и очень крутая! Задача №2 из Начал – это задача 6.5 из этой игры (возможно, в будущих версиях программы номер задачи изменится, конечно. Задача называется "Окружность заданного радиуса"). Вообще, в игре много задач из Начал.*/

6.1

А чего же в «Началах» не было?

Все, да не все включил в книгу Евклид. Скажем, задачи на построение циркулем и линейкой он включает, а любые задачи на построение с помощью других инструментов – нет, не включает.

Так в «Начала» Евклида не входят три знаменитые неразрешимые задачи на построение (см.[12]).

Рисунок 6.3: Решение Архимеда задачи о трисекции угла

методом "вставки".

Задача удвоения куба. Построить отрезок такой, чтобы куб с таким ребром имел вдвое больший объем, чем заданный. (Иначе говоря: дан отрезок, построить другой отрезок, который будет длиннее данного раз).

Задача о квадратуре круга. Построить квадрат, равновеликий заданному кругу (или же наоборот: построить круг, равновеликий заданному квадрату)[6 - То, что эти задачи равнозначны, древние греки прекрасно знали. Если научиться решать одну из них, другую они понимали, как решать.].

Трисекция угла. Разделить угол на три равные части (не на две, как биссектрисой, а на 3).

Математики разных времен пытались эти задачи решать. Естественно, не упомянуто, но подразумевается, что надо решать эти задачи с помощью циркуля и линейки. И с помощью циркуля и линейки у них не получалось. Зато иногда получалось с помощью других инструментов. Архимед, например, кажется, придумал, как с помощью разных инструментов решать все три эти задачи. Правда, Архимед жил позже Евклида (мы до него еще не дошли), но смысл тот же.

Так вот, решения с помощью "чего попало" в стиле пифагореизма было запрещено, считалось читерским, некрасивым. Поэтому Евклид не включил в свой трактат даже самые изящные и красивые из таких решений.

На рис.6.3 мы видим решение Архимеда задачи о трисекции угла методом "вставки". Если вы совсем-совсем неподготовленный читатель, то следующий абзац без потери смысла можно пропустить.

Угол АОВ – исходный, который надо поделить на три равные части. Произвольным радиусом строим окружность с центром в точке О. Продлеваем прямую АО. Теперь берем линейку, отмечаем на ней отрезок, равный радиусу окружности. И прикладываем эту линейку так, чтобы она проходила через точку А и чтобы отрезок, "зажатый" между окружностью и прямой ОВ был равен радиусу (тому самому, который мы заблаговременно отметили на линейке). В таком случае, полученный угол СDO будет как раз равен трети исходного угла. (Углы, отмеченные 1 равны между собой, т.к. в равнобедренном треугольнике; углы, отмеченные 2 равные между собой и вдвое больше углов 1 (т.к. угол АСО внешний к треугольнику ОСD). Ну, и дальше сумма углов в треугольнике равна ? и сумма трех углов с вершиной О равна ?. Значит, угол, отмеченный 3 втрое больше угла 1. Вот и все.)

Что тут используется? Почти что циркуль и линейка. Но только предлагается на линейке поставить засечку (отмечающую равный радиусу отрезок). Все. Так нельзя! Это не благородно, и недостойно.

Вот такие задачи Евклид так и не включил в свои Начала.

Кстати, древние греки не зря не могли найти решение с помощью циркуля и линейки в середине XIX века было доказано, что с помощью циркуля и линейки решить эти задачи нельзя, как ни исхищряйся.

Лекция 7

.

Архимед

Итак, «Начала» уже написаны. Доказательства почти на том же уровне строгости, как принято в математике сейчас. Геометрия на необычайно высоком уровне. Приложения математика находит в астрономии, музыке, зачатках теории перспективы. Т.е. приложения приняты внутри науки и искусства. "Извлекать выгоду" из науки не принято, недостойно – по соображениям почти религиозным, как мы помним.

Казалось бы, куда уж боле?

И тут на сцене возникает Архимед.

Архимед родился в Сиракузах, жил в Сиракузах, занимался математикой, механикой и астрономией в Сиракузах, а затем умер, защищая Сиракузы, в возрасте 75 лет.

Тут надо сказать, что Сиракузы – город на юге острова Сицилия (ныне это в Италии). В те времена был автономным греческим городом-государством, а вот вся остальная Сицилия уже была поглощена римлянами. Проходило время господства на мировой арене Древней Греции, наступало время господства Древнего Рима. Поэтому всю жизнь Архимеда Сиракузы были очень лакомым кусочком, за который постоянно сражались греки, римляне и карфагеняне. В связи с этим есть информация об Архимеде практически в любых книгах по истории того времени (ведь битвы и баталии в исторической литературе отражены очень хорошо!). Еще Плутарх, живший на рубеже I и II веков нашей эры, и писавший трактаты про историю того времени, обязательно писал об Архимеде.

А кроме того, уцелело довольно много сочинений, работ, чертежей самого Архимеда (и на русском языке есть отличная книжка с этими остатками [17]). Поэтому о том, чем этот невероятно гениальный человек занимался в науке, мы знаем довольно хорошо.

Отец Архимеда был известный в те времена астроном Фидий. И Архимед, таким образом, возможно, первый в истории потомственный ученый. Сейчас бывают целые ученые династии, а уж потомственные ученые – повсеместность /*автор этой книги, ваша покорная слуга, сама из таких: мои родители оба математики. Но в наши времена это не редкость.*/, а вот Архимед был первым.

Рисунок 7.1: Архимед. 287–212 гг. до н.э.

Архимед вел переписку с разными известными учеными разных стран. И, возможно, это первая в истории научная переписка. С тех пор и поныне научная переписка – один из главных движителей науки.

Ученые обязательно общаются между собой, обсуждают доказанное, ставят друг другу задачи и так далее. Кстати, в связи с научной перепиской встает моральный вопрос: как доказать в науке свой приоритет? Сейчас авторы пишут статьи, издают их или в научных журналах или в электронном виде (например, на https://arxiv.org/), и все знают: кто первый встал – того и тапки. То есть, тьфу, чья первая вышла статья, того и изобретение. Еще один путь: выступить на научной конференции или на научном семинаре. Рассказать о своем открытии, заодним рассказать о том, что это открытие – твое. Но в те времена журналов не было. Научные семинары тоже появятся еще только в XVII веке. Как избежать того, что ты расскажешь какую-то теорему коллеге, а он ее потом будет везде рассказывать от своего имени? Можно было написать книгу (подобно Евклиду), но это очень долго.

Архимед писал в своих письмах результаты, но не писал доказательств. Доказательства были в его трудах. А кроме того, Архимед обожал троллить своих адресантов (например, постоянно слал Эратосфену нерешаемые задачи или неправильные теоремы).

7.1

Архимед и анекдоты

Все книги на сайте предоставены для ознакомления и защищены авторским правом