ISBN :
Возрастное ограничение : 16
Дата обновления : 20.04.2024
Система автоматического управления приточной установкой позволяет ступенчато или плавно регулировать тепловую мощность электрического калорифера. Если же в приточной установке используется водяной калорифер, то автоматика имеет более сложное исполнение, так как в этом случае необходимо обеспечить дополнительную защиту от замораживания калорифера зимой.
В системах вентиляции с приточными установками могут использоваться следующие дополнительные элементы: воздухозаборные решетки, клапан на приточный воздух (с ручным или электроприводом), шумоглушители, устройства для регулировки расхода воздуха по помещениям, устройства распределения воздуха (диффузоры, решетки, плафоны).
Внешне камеры представляют собой моноблочную конструкцию и могут комплектоваться автоматикой различного уровня сложности от простых функций типа «ПУСК», «СТОП», «ОТКРЫТЬ/ЗАКРЫТЬ КЛАПАН» до программируемого управления параметрами (температура в помещении, производительность, температура внутри камеры и т. п.) по непрерывному контуру.
Приточная камера включает в себя следующие элементы:
– вентилятор двухстороннего всасывания, который крепится на траверсы рамы через резиновые виброизоляторы;
– каркас, изготовленный из алюминиевых профилей и соединительных уголков;
– утепленные панели из оцинкованной стали с наружной и внутренней стороны. В качестве утеплителя и шумоизолятора закладывается пеноизол. Для герметичности между панелями и каркасом прокладывается самоклеящийся уплотнитель. С одной стороны камеры для удобства обслуживания панели изготавливаются быстросъемными, с этой целью в них устанавливаются поворотные зажимы;
– нагреватель (водяной калорифер или электрические тэны);
– мягкая вставка из прорезиненной ткани с фланцами с двух сторон. Фланцы изготавливаются из оцинкованной шинки, соединенной уголками;
– фильтр воздушный быстросъемный;
– клапан воздушный утепленный с электроприводом.
Для создания баланса расходов поступающего и удаляемого из помещения воздуха используется вытяжная вентиляция, которая может быть представлена:
– автономными осевыми вентиляторами, установленными непосредственно в стене;
– крышными вентиляторами, устанавливаемыми на кровле;
– центробежными вентиляторами, устанавливаемыми на кронштейнах в стене или на металлических конструкциях кровли;
– канальными вентиляторами в корпусе в форме обечайки или в коробчатом корпусе, устанавливаемыми в сети воздуховодов (имеют патрубок на входе и диффузор на выходе, а в случае установки вентилятора двустороннего всасывания – два на входе и один на выходе);
– вытяжными вентиляционными установками, укомплектованными вентиляторами, гибкими вставками, регулирующими клапанами и собранными в едином корпусе (рис. 6).
Рис. 6. Вытяжная установка
3.5. Рекуператоры
Системы приточно-вытяжной вентиляции позволяют существенно снизить затраты на отопление, применив утилизацию тепла. Тепло воздуха, удаляемого из помещения, может быть использовано для подогрева приточного воздуха в специальных теплообменниках, называемых рекуператорами.
Такая система, использующая перекрестно-поточный рекуператор и выполненная в виде моноблока, характеризуется высокой эффективностью теплоутилизации, достигающей 70 %, и обеспечивает не менее чем двукратное снижение эксплуатационных расходов на нагрев воздуха (рис. 7).
Рис. 7. Приточно-вытяжная установка с рекуперацией
Установки с рекуперацией тепла предназначены для организации приточно-вытяжной вентиляции в системах комфортного кондиционирования воздуха, так как они изменяют температуру и влажность поступающего свежего воздуха с учетом климатических условий внутри обслуживаемого помещения.
Перекрестно-поточный пластинчатый рекуперативный теплообменник изготовлен из теплопроводного материала, обладающего свойством селективной проницаемости по отношению к молекулам воды (в отношении молекул других газов и веществ мембрана практически непроницаема). Благодаря этому разность парциальных давлений водяных паров в наружном и отработанном воздухе приводит к переносу влаги из одного потока в другой. В холодное время года молекулы воды из более влажного отработанного воздуха проникают через мембрану в поток наружного воздуха, увлажняя его. В теплое время молекулы воды из более влажного наружного воздуха проникают в поток отработанного воздуха, предотвращая излишнее увлажнение помещения.
3.6. Калориферы
Для нагревания воздуха в приточных вентиляционных установках применяют калориферы (воздухонагреватели) (рис. 8).
Рис. 8. Водяной калорифер
В качестве теплоносителя для калориферов используют высокотемпературную воду или пар. В первом случае калориферы имеют маркировку КB, во втором – КП.
В зависимости от числа последовательно расположенных по ходу движения воздуха трубок, по которым проходит теплоноситель, калориферы делятся на пять моделей: самая малая (СМ), малая (М), средняя (С), большая (Б) и самая большая (СБ). Каждая модель, в свою очередь, подразделяется на 12 номеров, которые определяют габаритные и присоединительные размеры и площадь поверхности нагрева.
Калориферы, предназначенные для работы с паром, изготавливают одноходовыми, с водой – как одноходовыми, так и многоходовыми. В одноходовых калориферах теплоноситель проходит через весь пучок трубок одновременно от одного коллектора к другому. В многоходовых же коллекторы разделены внутренними перегородками, которые неоднократно изменяют направление движения теплоносителя, в данном случае воды, что способствует возрастанию скорости ее перемещения и, как следствие, увеличению теплоотдачи калорифера. Присоединение штуцеров в одноходовых калориферах – диагональное, а в многоходовых – одностороннее (рис. 9).
Рис. 9. Схема движения теплоносителя в калориферах:
а – одноходовых; б – многоходовых
На трубки насаживают оребрение в виде пластин (пластинчатые калориферы) или навитой стальной ленты (спирально-навивные калориферы) для увеличения площади контакта с воздухом, проходящим через калорифер. Наружное оребрение оцинковывают для уменьшения коррозии и лучшего контакта с трубками. В коллекторы вваривают штуцеры для теплоносителя, а для защиты оребрения от повреждений сбоку между коллекторами приваривают боковые щитки. Для подсоединения калорифера к смежным элементам вентиляционной системы используют фланцы.
Расположение трубок с теплоносителем может быть последовательным – по направлению движения воздуха (коридорным), шахматным и коридорно-смещенным (наиболее эффективное). Сами трубки могут быть как круглого, так и плоскоовального сечения.
Лучшие теплотехнические показатели имеют спирально-накатные биметаллические трех- и четырехрядные калориферы, причем как при использовании пара в качестве теплоносителя (одноходовые), так и при использовании воды (многоходовые). Трубки для теплоносителя в этих калориферах стальные, оребрение накатано из алюминия.
Калориферы часто группируют по несколько штук как с параллельной установкой по воздуху, так и с последовательной или комбинированной. Если теплоносителем является пар, то калориферы устанавливают с вертикальным расположением трубок и подводом пара к верхнему патрубку; если теплоноситель – вода, то положение трубок должно быть горизонтальным, что обеспечивает удаление воздуха при наполнении калориферов водой и ее слив при прекращении работы системы.
Выпускаются также электрокалориферы (рис. 10).
Рис. 10. Электрический калорифер
Электрокалориферы состоят из стального кожуха с трубчатыми нагревательными элементами мощностью 1,6 или 2,5 кВт каждый. Для увеличения площади поверхности нагрева у нагревательных элементов образованы ребра диаметром 42 мм. Электрокалориферы могут работать как в ручном, так и в автоматическом режиме, поддерживая постоянную температуру воздуха на выходе или в помещении.
3.7. Канальные нагреватели
Нагреватель канальный служит для подогрева приточного (наружного) воздуха в воздуховодах (обычного круглого сечения). В центральных системах вентиляции канальные нагреватели используются в качестве вспомогательных, а в децентрализованных – в качестве основных подогревателей воздуха.
Корпус нагревателя выполняется из оцинкованной стали. Нагрев воздуха осуществляется ТЭНами. Обязательным является наличие защитных и регулирующих термостатов, что обеспечивает изделию высокую безопасность и возможность при этом функционировать в автоматическом режиме.
Канальные нагреватели снабжены двумя термостатами, предотвращающими перегрев: теплозащитным с автоматическим перезапуском (температура срабатывания +50 °C) и противопожарным с ручным перезапуском (температура срабатывания +110 °C). Канальные нагреватели рассчитаны на минимальную скорость воздушного потока 1,5 м/с и максимальную рабочую температуру выходящего воздуха 40 °C.
3.8. Воздухоохладители
Канальные воздухоохладители (рис. 11) предназначены для охлаждения и осушения приточного, рециркуляционного воздуха или их смеси в системах вентиляции и кондиционирования производственных, общественных или жилых зданий.
Рис. 11. Воздухоохладители КВО, КФО
В качестве хладагента в охладителях КВО могут использоваться вода или незамерзающие смеси. Максимально допустимое давление жидкости в них составляет 1,6 МПа.
В качестве хладагента в охладителях КФО используются фреоны. При поставке теплообменники наполнены инертным газом, который необходимо удалить во время подсоединения к холодильному контуру.
Конструкция охладителя представляет собой корпус, выполненный из оцинкованной стали, внутри которого устанавливаются теплообменник, каплеуловитель и поддон.
Теплообменник выполнен из медных трубок с алюминиевым оребрением, расположенных в шахматном порядке.
Фреоновый охладитель отличается конструкцией распределительного узла («паука») и спецификой подвода хладагента.
Коллекторы фреонового теплообменника выполняются из медных трубок.
Каплеуловитель (рис. 12) представляет собой набор специальных пластиковых пластин, эффективно улавливающих конденсат и собирающих его в поддон, расположенный в нижней части корпуса охладителя.
Рис. 12. Форма пластин каплеуловителя
Поддон дополнительно теплоизолирован и снабжен отводным патрубком для слива конденсата.
При монтаже воздухоохладителя необходимо обеспечить его горизонтальное положение.
3.9. Фильтры
По эффективности действия фильтры подразделяются на три класса. Фильтры I класса задерживают частицы пыли всех размеров (коэффициент очистки составляет не менее 0,99), фильтры II класса – частицы более 1 мкм (коэффициент очистки более 0,85), фильтры III класса – частицы размером более 10–50 мкм (коэффициент очистки не менее 0,60).
3.10. Оборудование для глушения шума
Уровень шума, создаваемого вентиляционными системами, является существенным критерием качества вентиляции. Источниками возникновения шума являются вентиляторы и электродвигатели, а также движение воздуха в воздуховодах и выход его из отверстий. Рассматривают два рода шума: аэродинамический и механический. Из всех источников его образования доминирующими принято считать вентиляторы, создающие аэродинамический шум. Причиной его появления является образование вихрей и их периодический срыв с лопаток рабочего колеса. Механический шум возникает в подшипниках, в приводе, в местах установки (креплений) вентиляционного агрегата на конструкциях зданий и т. д.
Степень шума возрастает при недостаточной балансировке рабочего колеса вентилятора. Шум, создаваемый вентиляционной системой, можно снизить при помощи следующих мероприятий: установки вентиляторов с наиболее совершенными акустическими характеристиками, в частности с лопатками, загнутыми назад; выбора вентиляторов с наибольшим КПД (не менее 0,9 от максимального), с минимальной угловой скоростью рабочего колеса (не выше 30 м/с), то есть с малыми диаметром и числом оборотов (при этом не следует завышать давление против расчетного, так как это вызывает увеличение уровня шума); тщательной балансировки рабочего колеса.
Снижение уровня шума по пути его распространения достигается ограничением скорости движения воздуха в воздуховодах или облицовкой их внутренних поверхностей звукоизолирующим материалом (стекловолокно, минеральный войлок и пр.).
С целью снижения передачи вибрации вентилятора в воздуховоды последние должны соединяться с патрубками вентилятора с помощью мягких вставок из резины, прорезиненного брезента и стеклоткани.
Снижение шума от вибрации достигается установкой вентиляционных агрегатов на виброизоляторах. Применяются типовые конструкции пружинных и резиновых виброизоляторов (рис. 13).
Все книги на сайте предоставены для ознакомления и защищены авторским правом