Джеймс Девис "Решаем задачи Python"

None

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 999

update Дата обновления : 25.05.2024

str2 = str2.lower()

# Сортируем символы в обеих строках

sorted_str1 = ''.join(sorted(str1))

sorted_str2 = ''.join(sorted(str2))

# Сравниваем отсортированные строки

if sorted_str1 == sorted_str2:

return True

else:

return False

# Пример использования

string1 = "listen"

string2 = "silent"

if are_anagrams(string1, string2):

print(f"{string1} и {string2} – анаграммы.")

else:

print(f"{string1} и {string2} – не анаграммы.")

```

Этот код сначала проверяет, равны ли длины строк. Если да, он преобразует обе строки в нижний регистр и сортирует их символы. Затем он сравнивает отсортированные строки. Если они равны, функция возвращает `True`, что указывает на то, что строки являются анаграммами. В противном случае возвращается `False`.

Пояснения к коду:

Определение функции `are_anagrams`:

– Эта функция принимает две строки в качестве аргументов и возвращает булево значение, указывающее, являются ли они анаграммами.

Проверка длин строк:

– Сначала функция проверяет длины обеих строк. Если они не равны, то они не могут быть анаграммами, и функция возвращает `False`.

Преобразование строк в нижний регистр:

– Затем обе строки преобразуются в нижний регистр при помощи метода `lower()`. Это делается для упрощения сравнения, так как мы не хотим учитывать регистр при проверке на анаграмму.

Сортировка символов в строках:

– После этого символы в каждой строке сортируются в алфавитном порядке при помощи функции `sorted()`.

– Мы объединяем отсортированные символы обратно в строки при помощи метода `join()`. Это дает нам отсортированные версии строк.

Сравнение отсортированных строк:

– Отсортированные строки сравниваются. Если они равны, то строки являются анаграммами, и функция возвращает `True`. Если они не равны, функция возвращает `False`.

Пример использования:

– В конце кода показан пример использования функции, где две строки `"listen"` и `"silent"` проверяются на анаграмму.

– Выводится соответствующее сообщение в зависимости от результата проверки.

Таким образом, этот код эффективно проверяет строки на анаграммы, используя описанный выше алгоритм.

11. Задача о поиске наибольшего общего делителя (НОД): Написать программу, которая находит наибольший общий делитель двух целых чисел.

Для решения этой задачи мы можем использовать алгоритм Евклида, который базируется на принципе, что НОД двух чисел не изменится, если к большему числу присоединить или вычесть меньшее число. Мы будем применять этот алгоритм до тех пор, пока одно из чисел не станет равным нулю. В этот момент другое число и будет НОДом исходных чисел.

Пример кода на Python:

```python

def gcd(a, b):

while b:

a, b = b, a % b

return a

# Пример использования

num1 = 48

num2 = 18

result = gcd(num1, num2)

print(f"Наибольший общий делитель чисел {num1} и {num2}:", result)

```

В этом коде:

– Функция `gcd` принимает два целых числа `a` и `b`.

– В цикле `while` мы выполняем операцию над числами до тех пор, пока `b` не станет равным нулю.

– Внутри цикла `while` происходит обмен значениями `a` и `b`, где `a` принимает значение `b`, а `b` принимает значение остатка от деления `a` на `b`.

– Когда `b` становится равным нулю, цикл завершается, и `a` содержит наибольший общий делитель исходных чисел.

– Этот НОД возвращается функцией и выводится на экран.

Таким образом, данный код эффективно находит наибольший общий делитель двух целых чисел.

12. Задача о пространственном вращении: Реализовать программу для вращения точек в трехмерном пространстве относительно заданной оси и угла.

Для реализации программы вращения точек в трехмерном пространстве относительно заданной оси и угла, мы можем использовать следующий подход:

1. Представление точек: Каждая точка в трехмерном пространстве может быть представлена как тройка координат (x, y, z). Мы можем использовать этот формат для хранения и работы с точками.

2. Выбор оси вращения: Пользователь может задать ось вращения. Обычно используются оси X, Y и Z. Для простоты давайте начнем с оси Z.

3. Угол вращения: Пользователь также задает угол вращения в градусах или радианах, в зависимости от предпочтений.

4. Матрица поворота: Для выполнения вращения мы используем матрицу поворота, которая зависит от выбранной оси и угла вращения.

5. Применение вращения к точкам: Для каждой точки применяется матрица поворота, чтобы получить новые координаты точек после вращения.

6. Вывод результатов: Полученные новые координаты точек могут быть выведены на экран или использованы для дальнейших вычислений или отрисовки.

Итак, основная идея решения заключается в использовании матриц поворота для вращения точек в трехмерном пространстве относительно заданной оси и угла.

Для реализации программы вращения точек в трехмерном пространстве относительно заданной оси и угла мы можем воспользоваться математическими преобразованиями и использовать библиотеку для работы с трехмерной графикой, например, библиотеку `numpy`.

Пример кода на Python для вращения точек вокруг оси z на заданный угол:

```python

import numpy as np

def rotate_point(point, angle):

# Преобразуем угол в радианы

angle_rad = np.radians(angle)

# Матрица поворота для оси z

rotation_matrix = np.array([[np.cos(angle_rad), -np.sin(angle_rad), 0],

[np.sin(angle_rad), np.cos(angle_rad), 0],

[0, 0, 1]])

# Преобразуем точку в вектор-столбец

point_vector = np.array([[point[0]],

[point[1]],

[point[2]]])

# Выполняем умножение матрицы поворота на вектор точки

rotated_point = np.dot(rotation_matrix, point_vector)

# Возвращаем координаты вращенной точки

return rotated_point[0][0], rotated_point[1][0], rotated_point[2][0]

# Пример использования

point = (1, 0, 0) # Координаты точки (x, y, z)

angle = 90 # Угол в градусах

rotated_point = rotate_point(point, angle)

print("Координаты вращенной точки:", rotated_point)

```

Этот код вращает точку `point` вокруг оси Z на заданный угол `angle`.

– Мы используем функцию `rotate_point`, которая принимает координаты точки и угол вращения.

– Угол преобразуется в радианы.

– Затем создается матрица поворота для оси Z.

– Координаты точки преобразуются в вектор-столбец.

– Мы выполняем умножение матрицы поворота на вектор точки.

– Результатом являются координаты вращенной точки, которые выводятся на экран.

Для вращения точек вокруг других осей или для сложных операций вращения можно использовать аналогичный подход, но с другими матрицами поворота.

Похожие книги


Все книги на сайте предоставены для ознакомления и защищены авторским правом