9785006404885
ISBN :Возрастное ограничение : 12
Дата обновления : 16.06.2024
Однако, особенности развития конкретного мозга могут приводить к другой архитектуре, и связь является статистической, а не абсолютной. Подробнее я это разбираю дальше, сопоставляя модульную и функциональную архитектуру мозга. Архитектура может служить ограничением для определенных действий, например, межполушарных связей маловато и это ограничивает образование сложных ансамблей между ними. Число удерживаемых объектов внимания также ограничено, поэтому для работы с большим количеством объектов важно правильно организовать смысловые структуры, которые позволят ими управлять.
Исходя из избыточности нервных клеток, можно утверждать, что в подавляющем большинстве случаев ограничения не носят физиологического характера и могут быть сняты путем тренировки и обучения, которое нужным образом достроит ансамбли нейронов. Однако, одна и та же достройка в период раннего развития мозга и уже в зрелом возрасте требует разного количества усилий. Это хорошо известно по обучению языку: дети в многоязыковых семьях легко осваивают несколько языков в раннем возрасте, и в дальнейшем развитии также легче осваивают новые языки, чем те, кто учит другие языки уже в зрелом возрасте.
Достройка ансамблей, даже из существующих клеток требует возбуждения большого количества нейронов, которое должно быть обеспечено дофамином и системой внутреннего подкрепления. Изменение весов в существующих ансамблях, в том числе со сменой пути, требует меньше ресурсов, а использование уже имеющихся ансамблей – еще менее ресурсов.
Более того, есть физиологический процесс, обеспечивающий фиксацию устойчивых связей для быстрого прохождения возбуждения по часто используемым путям – миелинизация. К сожалению, он является необратимым, и перестроить таким образом зафиксированные схемы мышления становится невозможным, хотя можно попробовать сделать что-то с участком, который идет на вход этого процесса, построить альтернативные пути.
Есть отдельные механизмы регулирования, касающиеся роста и отмирания неиспользуемых нейронов и связей, и возрастная динамика активности этих механизмов. С возрастом неиспользуемые связи и избыточные клетки отмирают, слишком часто используемые пути миелинизируются.
Soft мозга – сформированные ансамбли нейронов
До млекопитающих базовым механизмов формирования ансамблей нейронов были предзаписанные программы: рефлексы и инстинкты. У млекопитающих эволюция перешла от них к формированию ансамблей нейронов обучением.
– От безусловных рефлексов перешли к условным, при этом у людей формирование условных рефлексов контролируется сознанием.
– Механизмы инстинктов остались, но их проявление в значительной мере определяется социальными нормами, которые воспринимаются осознанно или без осознания, но в любом случае являются результатом формирования ансамблей мозга, а не врожденными, генетически обусловленными механизмами.
– Гормональные нейрофизиологические механизмы, лежащие в основе эмоций, поддерживают базовые способы поведения: поисковое и подражательное, охоту, агрессию, социальное взаимодействие, однако где и как будет это поведение проявляться, зависит от социальных условий развития ребенка.
В целом полезно различать следующие способы, которыми формируются ансамбли нейронов.
– Наблюдение и подражание – базовый механизм у млекопитающих, обеспечивает основную часть обучения в раннем возрасте
– Обучение родителями, оно тоже есть у всех млекопитающих
– Обучение через текст и другие способы передачи информации
– Личный жизненный опыт
Ансамбли не формируются сами. Есть возрастные динамики формирования конкретных структур с развитием ребенка, но без обучения и личного опыта ансамбли сформированы не будут.
Есть исследования по корреляции между поощрением любознательности в год и успехами в школе и дальнейшей карьере. С другой стороны, насколько я знаю, там не исследовали детально вопрос, насколько важно именно ранее поощрение, и насколько легко это изменить в более позднем возрасте. Ведь понятно, что если родители поощряли любознательность в полгода-год, то они и далее продолжали это делать, в том числе, возможно, противодействуя и компенсируя навязывание правил детскими учреждениями. И наоборот, те родители, которые блокировали любознательность в детском возрасте, продолжали это делать и позднее.
Насколько я представляю, у педагогов, которые занимаются развитием детей, есть достаточно много наработок о возрастной динамике развития. Однако, их сопоставление с нейрофизиологическим развитием мозга еще в будущем, тут тоже много данных наработано до современных исследований, а также не учитывают социально-культурные составляющие.
Работа мозга: уровни управления самим собой
Действия человека управляются его мозгом. И нам представляется, что у нас есть поток размышлений, которые дальше превращаются в наши действия. Правда, иногда в этом потоке появляются неожиданные мысли или вдруг возникают сильные эмоции, которые сбивают мысль. А иногда мы совершаем нечто, и недоумеваем: как же нас угораздило. Так происходит потому, что в нашем мозге есть несколько контуров управления, работающих параллельно, и далеко не все мысли нами осознаются. Звучит парадоксально, но это так. Ведь мысли – это распространение возбуждения по ансамблям нейронов. И если это возбуждение ансамбль нейронов распространяется до области, отвечающей за самосознание человека, то мысль ему видна, а нет – так нет. Ряд контуров управления лежат ниже уровня осознания, это наш внутренний автопилот, который в целом помогает эффективно действовать, но в частных случаях дает сбои. И сейчас мы рассмотрим это подробнее.
Модель Канемана
Модель Канемана выделяет два функциональных режима работы мозга в деятельности:
– S1 – быстрое принятие решений и воплощение их в жизнь привычными действиями;
– S2 – медленное мышление, с помощью которого будущие действия собираются из привычных с выбором альтернатив и проработкой различных сценариев.
Фокус его исследований – на том, что быстрое мышление часто ошибается в своих решениях, и эти баги устройства мозга надо иметь ввиду, замечать и во-время останавливаться. При этом у человека есть склонность не признавать баги собственного мышления, а постфактум рационализировать принятые решения, объясняя, что оно было правильным. При том, что реально решение принималось вовсе не из тех соображений, которые предъявляются в виде объяснений.
Если представить картину работы мозга, выявленную Канеманом, то мы получим такую схему.
Сам Канеман не исследует механизмы мозга, которые лежат в основе его функционального деления на две системы. Более того, он говорит, что это – лишь метафора. Однако, поскольку описываемое его моделью явления объективно происходят, то законным является вопрос о выявлении тех механизмов работы мозга, которые лежат в основе таких явлений. Как мы увидим дальше, разделение на быстрое и медленное мышление имеет два аспекта: различная энергия, необходимая для каждого из этих режимов, и функциональное деление мозга.
Кроме того, большинство стрелок на схеме включают два уровня: внутри ансамбли, которые уже активизировались на предыдущих тактах работы и образуют доминанту, активный контекст работы мозга, и все остальные ансамбли, и это – тоже существенно для мышления. Сосредоточившись на конкретном действии, мы способны игнорировать другие факторы внешнего мира. Как я говорил раньше, концепт доминанты был введен Ухтомским для описания фиксации на выполнении определенного действия. Это обеспечивается через возбуждение ансамблей нейронов, связанных с ситуацией, по сравнению с остальными ансамблями, которые находятся вне контекста. И часто играет это «злую шутку» при рассуждениях: мы игнорируем соображения, которые у нас в мозгу не связаны с текущим контекстом, хотя там могут быть решения ситуации. Например, не применяем методы работы с конфликтами или способы принятия решений руководителям в домашних ситуациях и наоборот. Такой разрыв связан с фрагментарностью картины мира в целом, о которой я еще буду говорить, описывая модель флешек.
Энергия для мышления
Возбуждение ансамблей нейронов требует энергии. И это регистрируют методы фМРТ. Однако, этот процесс очень малой вариабельности. Энергетическое потребление нейрона как клетки, основанное на АТФ-цикле Кребса – стабильно и варьируется при возбуждении только на 5%. Мозг всегда потребляет примерно треть от среднего количества энергии, вырабатываемой телом, и вариации слабо на это влияют, в отличие от мышц для которых вариабельность велика.
Так что идея дефицита энергии для работы мозга – миф. По факту, разработчик «устает» писать код и идет «отдыхать» в Warcraft, при том, что во время прохождения миссий мозг работает гораздо интенсивнее, решает сложные задачи принятия решений в игре и взаимодействия с другими игроками в высоком темпе.
Реально тут работают другой механизм, основанный на дофамине, который необходим для передачи возбуждения и расходуется в процессе передачи. Он вырабатывается определенными центрами в мозгу, а дальше распространяется по разным путям, и есть механизмы, которые управляют его распространением в зависимости от ситуации, направляя в двигательные, размышляющие и другие области мозга. И в зависимости от маршрутизации дофамина соответствующие области работают более активно. Такое распределение связано с механизмами мотивации и внутреннего подкрепления.
Усталость мозга от мышления – миф. Реально не хватает мотивации, и он не хочет думать о чем-то
В связи с этим у нейрофизиологов принято говорить об энергии для мышления, подразумевая под этим не энергопотребление нейрона как клетки, а подразумевая ресурс дофамина. А карты возбуждения областей мозга вообще работу кровоснабжение. Я дальше в книге употребляю термины «энергия мышления» и «ресурсы мышления» как синонимы.
Распространение дофамина – частный случай гормонального механизма управления мозгом, который образует эмоциональный контур. Подробный разбор этого механизма будет в главе, посвященной эмоциям. На уровне hardware тут помимо нейронов работают еще клетки глии.
В мозге нет жесткого переключения или-или, есть распределение энергии между управлением текущими действиями и внутренней деятельностью организма с одной стороны, и размышлениями, принятием решений с другой. Долю энергии мышления, которая расходуется на поддержание текущей деятельности, можно оценить по уровню возбуждения вегетативной нервной системы, так делает приложение Welltory, показывая в качестве батарейки свободный остаток, который может быть пущен на размышления. И то же самое показывает в виде батарейки Анна Обухова в своих выступлениях, но с другой калибровкой: 100% по Welltory это 80% у Обуховой (это было в ответах Анны на вопросы на TeamleadConf в ноябре 2023).
Энергия на привычное и новое – различна
Теперь вернемся к модели Канемана. Выполнение привычных действий означает возбуждение сформированных устойчивых ансамблей нейронов, оно задействует малое количество нейронов, а возбуждение большого количества нейронов выполняется лишь в точках выбора. В то время как размышления, медленное мышление требует возбуждения большого количества нейронов в коре. Разница потребления дофамина между режимами быстрого и медленного мышления – примерно в 9 раз, как это показано на схеме из доклада Анны Обуховой «Как помочь людям меняться» (https://ridero.ru/link/CfXmMAN07dqf0ogGDi5iM) (видео (https://youtu.be/ZD2_A1VA2sw)) на AgileDays-2021.
Выполнение привычных действий – работа в режиме автопилота. И человек способен так делать довольно сложные действия, например, вести автомобиль. И неожиданно обнаружить себя на полпути к работе в выходной день, хотя собирался в торговый центр: он сел за руль – и у него включился автопилот. Реальный режим – смешанный, например, когда мы пишем статьи или код: мышление выдает команды достаточно верхнего уровня, а автопилот воплощает их в движения мышц и коррекцию по обратной связи, на основе того, что глаза видят в движениях пальцев, если мы не владеем слепой печатью, и на экране. И это – во много раз быстрее, чем в ситуации незнакомой клавиатуры, или режиме написания на малоактивном языке, где написание слов не отработано.
Здесь надо иметь ввиду, что это описание дает однопоточную картину. А реально идет много потоков. Всегда можно выделить мышление некоторый основной контекст, например, управление автомобилем, и наблюдение за окружающей обстановкой, от которого могут идти прерывания различного характера, в том числе не связанные с основным процессом, например, звонок по телефону. А еще, если оперативное управление преимущественно обеспечивается быстрым мышлением, то в фоновом режиме может идти процесс размышлений в медленном мышлении.
Как я уже говорил, идет конкуренция за управление, а механизмы управления вниманием выполняют арбитраж между системами быстрого и медленного мышления, также как между разными ансамблями нейронов в каждом из них. Например, в ситуации, когда в потенциально опасной обстановке на улице один ансамбль выдает реакцию убежать, а другой – осторожно идти, не обращая внимания. Или когда то же самое происходит не на улице, а при получении информации о потенциально опасном изменении политической обстановки.
Логическая схема работы мозга
Схема Канемана, очевидно, неполная. В ней не хватает важного функционального блока, касающегося эмоций. Кроме того, блоки быстрого и медленного мышления требуют усложнения, выделения отдельных контуров:
– В рамках медленного мышления есть блок «Обдумать ситуацию». За ним скрываются два существенно различных режима размышлений: есть ситуации, когда решение примерно понятно, его надо скомпоновать из каких-то известных действий, просто продумав сопряжение между ними и взаимное влияние, то есть сделать сценарий, который затем выполнить. А есть ситуации, в которых решение совсем не очевидно и необходим творческий поиск, чтобы его найти.
– В блоке быстрого мышления есть смысл различать работу на автопилоте с реализацией некоторого сценария и реакции на отклонения и нештатные ситуации от быстрых реакций на внешние события.
С учетом этих дополнений схема приобретает такой вид.
Как и на прошлой схеме, большинство стрелок на схеме включают два уровня: внутри ансамбли, которые уже активизировались на предыдущих тактах работы и образуют доминанту, активный контекст работы мозга, и все остальные ансамбли, и это – тоже существенно для мышления. Ведь сосредоточившись на конкретном действии, мы способны игнорировать другие факторы внешнего мира. Однако, при этом важно не пропустить опасность. Это обеспечивает блок эмоций, который представляет собой альтернативный ансамблям механизм управления возбуждением ансамблей нейронов через гормоны и нейромедиаторы.
Модульная и функциональная структура мозга
Возникает вопрос: а есть ли структуры, которые реализуют контуры управления, выделенные на логической схеме? Ответ положительный: да, это можно сделать.
Однако, это соответствие является весьма сложным. Дело в том, что подобно другим системам, модульная структура мозга существенно отличается от функциональной. Мы не можем указать конкретную компактную область, отвечающую за конкретное понятие или конкретную эмоцию гнева или испуга, или даже за все эмоции вместе. Мы не можем также указать область, отвечающую за творческое решение задач, поиск и построение новых схем действия. Эти функции сложным образом распределены в мозге. Однако, это не означает, что они смешаны. В частности, современные исследования фМРТ показывают, что набор областей, активируемых при решении творческих задач отличается от областей, управляющих выполнением действий по плану.
Подобно тому, как понятие кошки распределено по многим областям мозга, области творческого мышления или исполнения планов тоже является распределенным
Исследования фМРТ появились недавно. До этого исследователи не могли заглянуть внутрь мозга в процессе его работы, и изучали его структуру и назначение отдельных областей исходя из того, как меняются способности человека к мышлению при повреждениях конкретных областей мозга. В основе таких исследований лежали предположения, что модульная и функциональная структура совпадают, то есть каждая анатомическая область мозга решает определенные задачи. А это предположение верно лишь отчасти. Например, есть область мозга, в которую приходит зрительный нерв, есть область, в которую приходит слуховой нерв и эти области занимаются первичной обработкой соответствующих сигналов. А вот при дальнейшей обработке и при мышлении в целом принцип соответствия модульной и функциональной структуры нарушается.
Если сделаем запрос «структура мозга», то получим большое количество картинок и статей, на которых мозг поделен на разные области. На одних их будет в пределах десятка, а на других – ближе к сотне. Примером может служить статья в вики Структура мозга (https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D1%8B_%D0%BC%D0%BE%D0%B7%D0%B3%D0%B0), или схема, приведенная ниже. Это – модульная структура мозга.
В целом модульная структура мозга анатомически задана. Нейроны и связи между ними в ходе развития мозга формируются не произвольно, а в соответствии с некоторой заложенной архитектурой. Есть исследования, что принципиально эта архитектура – общая у всех животных, начиная от земноводных, а вариации касаются времени и скорости развития конкретных областей, в частности коры головного мозга у млекопитающих, которая постепенно увеличивается к высшим приматам и человеку. Соответственно, в этих областях появляется больше нейронов и связей, они могут выполнять больше функций. Но дальше вопрос в наполнении этих нейронов и связей конкретным смыслом, то есть формирования на их основе ансамблей, выполняющих конкретную функцию. Если индивид получает соответствующий опыт, то функции формируются, а без личного опыта – нет.
Исследования с помощью фМРТ, которые позволяют видеть активность разных областей мозга, показали, что при выполнении задач задействуются ансамбли нейронов, распределенные по всему мозгу. И то же самое касается смыслов и понятий, если мы думаем, например, о кошке, то активируются ансамбли, связанные с ее визуальным образом, мяуканием, которое издают кошки, связанными действиями, а также – с различными смыслами – образами сказочных персонажей, другими кошачьми и так далее, ансамбль нейронов оказывается распределен по значительной части мозга.
Здесь проявляется разница между функциональной и модульной структуры системы. Аналогом является устройство организации, например, по установке окон или продаже окон кухонь. Там тоже выделены отделы: продажи, производство, закупки, склад, логистика, бухгалтерия и другие. Но для выполнения любого заказа все они должны сработать совместно: покупатель должен с компанией встретиться в точке продажи, то есть в магазине или на сайте, затем к нему приедет замерщик, чтобы сформировать конкретный заказ, затем заказанное должно быть изготовлено, при этом может потребоваться закупка комплектующих, далее это должно быть доставлено и установлено, а где-то по пути – принята оплата. И часть стадий может выполняться параллельно, а в целом компания одновременно обрабатывает много заказов.
Так и в мозге для управления нашими действиями идет параллельная и согласованная работа многих отделов, а еще одни и те же функции дублируются. Собственно, как в организации: одни комплектующие закупаются в больших количествах, и поддерживается запас, а другие закупаются под заказ, при этом возможны особые ситуации, когда запас кончился, или поставщик вдруг пропал.
Когда говорят об организации, то обычно разделяют организационную структуру, сформированную по принципу выполнения конкретных функций, и протекание сквозь нее бизнес-процессов, которые эти функции задействуют. А в системной инженерии, которая описывает работу сложных систем, принято говорить о функциональной структуре системы, которая обеспечивает выполнение ей внешних функций, например. обработку заказов компанией или управление автомобиля человеком, и модульной структурой из отделов компании или областей мозга. В частных случаях эти структуры могут совпадать, но обычно это разные структуры. Для компаний это очевидно, организационная структура совпадает с функциональной в очень ограниченном количестве организаций, например, в какой-нибудь сети питания или ателье, если каждая точка самостоятельно выполняет полный цикл обслуживания клиента, да и то, часть функций стремятся сделать централизованными для повышения эффективности.
То же самое справедливо для мозга, который гораздо сложнее компании. Из общих соображений современного системного подхода это представляется очевидным. Но для исследователей в конкретной области явилось сюрпризом, например, информация о том. что те же нейроны зрительной коры, которые. активируются при опознании кошки нашими глазами активируются и в том случае, когда мы просто представляем эту кошку, закрыв глаза.
Резюмируя, можно сказать, что в исследованиях устройства мозга долгое время придерживались в исследованиях мозга гипотезы о единстве функциональной и модульной структуры, а современные исследования показали, что она неверна и выполнение функций мышления сложным образом распределено по областям мозга.
+ Модульная и функциональная структура мозга различаются: мы не можем указать область, где сосредоточена конкретная функция.
Исследования фМРТ также показали, что модульная структура мозга не является жесткой: при повреждении смежные области могут брать на себя функции поврежденной за счет большого количества связей. Кроме того, в мозге предусмотрено дублирование путей решения конкретных задач за счет высокой связности. Собственно, на уровне осознанных размышлений это было известно давно: люди по-разному рассуждают при решении конкретной задачи. Однако, было показано, что использование разных способов рассуждения еще и задействует разные области мозга, а значит можно тренировать и развивать каждый из этих способов.
Процесс специализации областей мозга не окончен, например, есть исследования, что с массовым появлением мобильных телефонов выделилась отдельная область, отвечающая за координацию движений большого пальца, активно задействованного при работе с телефоном, это выделение происходило за счет соседних областей, при чем относительно одинаково у разных людей.
Исследования модульной и функциональной структуры мозга также развиваются. Взгляды на выполнение определенных функций – пересматриваются, и общепринятой карты отделов мозга не существует. Это легко увидеть, если сравнить списком областей мозга в английской вики (https://ridero.ru/link/lmJAe1nU4zFb-StFhryIl) и в русской (https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D1%8B_%D0%BC%D0%BE%D0%B7%D0%B3%D0%B0). В обоих случаях речь идет об анатомической, то есть модульной структуре. А функциональную структуру на верхнем уровне описывает представление о large scale brain network (https://ridero.ru/link/USJ2kTB5Z5M5hzTdNcPOR). В описаниях отдельных сетей есть ссылки на входящие в них области мозга, однако со списком областей мозга они сопоставляются не слишком хорошо. Кроме того, практически во всех описаниях сетей есть раздел номенклатура, в котором зафиксированы особенности употребления тех или иных названий в разных научных публикациях – устоявшейся терминологии не существует. И речь идет не просто о разных названиях – исследователи по-разному приводят границы между различными функциями.
Отражение логической структуры на области мозга
На логической схеме выделено три функциональных уровня: быстрое и медленное мышление и эмоции между ними, а в каждом выделены отдельные блоки. Если посмотреть на физиологические модели мозга с таким делением, то мы увидим модель триединого мозга Маклина (https://en.wikipedia.org/wiki/Triune_brain).
Сейчас эта модель подвергается критике. Однако, содержательная часть той критики, которую я читал, сводится к тому, что модель чрезмерно упрощает, а на самом деле все устроено сложнее. В общем, это – понятно, и если бы помимо него указывали на другую соразмерную модель – было бы хорошо. Однако, критики не приводят альтернативы: детализация, которая сразу выделяет несколько десятков частей, да еще в разных вариациях, такой альтернативой не является.
Все книги на сайте предоставены для ознакомления и защищены авторским правом