Валерий Николаевич Бескопыльный "Наши развилки. Развилки эволюции природы на пути к человечеству"

В научно-популярной форме прослеживается удивительный маршрут эволюции природы от хаоса элементарных частиц Большого взрыва до человека разумного современного. Увлекательный и непредсказуемый путь природы к человеку в нашей Вселенной оказался неимоверно протяженным, очень извилистым и продолжительным. Этот «человеческий» маршрут пробивался в будущее через клубок неисчислимого количества разных направлений эволюции природы. Вешками «антропного» маршрута выбраны 47 важнейших, замечательных эволюционных развилок – разномасштабных, судьбоносных событий, возникавших в расширяющейся и стареющей Вселенной. Каждый человек существует благодаря реализации этих природных важнейших поворотов эволюции, которые можно назвать «Наши развилки». Тернистый путь эволюции природы к человеку сопровождали непосредственные участники – атомные гиды Гидрожен, Оксижен, Нитрожен, Флюор, Ферум, Карбомал и Карбовеж.

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 17.06.2024


После Океанической развилки большая часть поверхности планеты была покрыта водами Мирового океана, в пределах которого формировалась двухслойная (базальтово-осадочная) океаническая кора. Но какая-то часть планеты не была охвачена процессом океанизации первичной базальтовой коры. Потому, что существовали отдельные участки литосферных плит, приподнятые над уровнем океана благодаря надвиганию их на смежные тектонические блоки. Возможно, эти доконтинентальные участки суши стали первыми «зародышами» будущих материков. В этих местах базальтовая пластина земной коры погрузилась в мантию под смежный блок коры на несколько десятков километров, не сразу меняя состав и структуру. Вместе с горными породами в мантию попало огромное количество воды.

Горные породы погружающегося блока расплавлялись в раскаленных недрах мантии и в форме крупных капель опускались к ядру планеты. Во время этих геологических событий реализовались два интересных процесса: 1-какая-то часть пористого базальта океанической коры превращалась в плотнейший эклогит[36 - Эклогит – плотная метаморфическая порода, образовавшаяся путем преобразования базальтовых пород океанической коры, которые погружены в зонах субдукции в мантию на глубину 45-300 км, где существуют большие температуры (400-1000°C) и давления. Эти породы тяжелее основных мантийных пород – перидотитов и поэтому погружаются под них.], который продолжал путь в глубины планеты, 2- другая доля коры в виде относительно легкой базальтовой магмы, устремлялась вверх. По мере подъема расплавленные базальтовые породы основного состава (богатые магнием, содержащие кремний – SiO2 – в объеме от 40 до 52 %) взаимодействовали с проникшими в недра массами океанической воды. В результате происходило образование магмы среднего (содержание кварца – SiO2 от 52 до 65 %) и кислого (SiO2 от 65 до 75 %) состава. Возникал новый тип твердых горных пород – сначала «серые гнейсы» – гранитоиды, а позже – «нормальные» граниты. Расплавы более легких гранитов растекались на более тяжелом базальтовом слое, создавая второй, гранитный слой континентальной коры. Формировался базальтово-гранитный тип коры, который служил основой континентальной коры, отличающейся от океанической коры повышенным содержанием оксида кремния (SiO2) и трехслойным строением. Сначала возникли первые крупные участки новой двухслойной континентальной коры (гранитно-базальтовой, еще без третьего – осадочного слоя) – кратоны, которые в виде первых островов возвышалась над еще очень мелководным океаном.

Гранитный состав делает континентальную кору более легкой, что позволяет её блокам всплывать в астеносфере выше, чем базальтовое океаническое дно, и подобно айсбергам возвышаться над уровнем океана. Новая, гранитная кора оказалась не только легкой, но и прочной. Высокая прочность гранитов позволяла первым островам противостоять разрушительной мощи стометровых океанических волн. На поверхности всего океана стали появляться гранитные острова, которые впоследствии объединялись в огромные массивы суши. Континентальная развилка эволюции Земли прекратила глобальное господство водяной стихии и начала эпоху материков. Размываемые горные породы этих выступов суши выносились речными потоками или ветрами в водные бассейны, на дне которых накапливались в форме древнейших пластов обломочных пород[37 - В Гренландии обнаружены древнейшие из известных осадочных пород возрастом 3,8 млрд. лет.] континентального происхождения.

После появления плит с континентальной корой, в зонах их столкновения с океаническими плитами, последние погружаются под материковую кору. В этих местах происходило наращивание материковой коры за счет гранитизации базальтов океанической коры. Здесь широко проявлялась вулканическая деятельность, формировались складчатые области, осадочных пород превращались в метаморфические.

2.5.1. Континентальная кора – необходимое условие для наземной жизни

Земной эволюции потребовалось, по разным оценкам, от 100 до 180 млн. лет после начала тектоники океанических плит (4,38 – 4,3 млрд. л.н.) для того, чтобы приблизительно к рубежу 4,2 млрд. л.н. создать первые участки континентальной коры и затем сформировать древнейшие континенты – блоки суши над водами Мирового океана. На континентах сформировались первые материковые воды, которые первое время практически не отличались от морской воды. Эти воды были того же химического типа, что и морские – хлоридные кальциево-магниевые или магниево-кальциевые воды. Впоследствии континентальные воды эволюционировали в результате контактирования с выветриваемыми основными и ультраосновными породами на суше, а также с обновляемой атмосферой.

Не осталось свидетельств о количестве и размерах этих пионерных континентов, но не приходится сомневаться в их существовании. Первым островам материкового типа пришлось еще около 600 млн. лет перемещаться под воздействием циркулирующих потоков вещества горячих недр планеты (дрейфовать) вместе со своими литосферными плитами по таким траекториям, которые вели их к всеобщей встрече. Столкновение континентов произошло около 3,6 млрд. л.н. В результате появился среди океанических вод первый суперконтинент[38 - Суперконтинентом называют блок земной коры, который объединяет преобладающую часть суши в единный, непрерывный массив.] – Ваальбара[39 - Ваальбара – название сконструированное из окончаний названий двух самых старинных блоков земной коры, обширных скоплений древнего гранита (кратонов): Каапвааль, расположенного, преимущественно на территории ЮАР, и Пилбара в Западной Австралии.], который просуществовал около 500 млн. лет и затем (около 3,1 млрд. л.н.) раскололся на отдельные континенты. Вновь образованные осколки-континенты отправились в новый цикл путешествия по астеносфере, наращивая по пути свои размеры, соединяясь с подобными небольшими материками, подготавливаясь к пришествию живых организмов.

Начало образования континентальной коры и появление первых блоков суши означало удачный поворот в развитии нашей планеты 4,2 млрд. л.н. на Континентальную эволюционную развилку. Эта развилка является таким возможным поворотом в эволюции планет и крупных спутников, который в полной мере реализовался в Солнечной системе только на Земле. Лишь на Земле существовали условия, позволившие Литосферной и Океанической развилкам ориентировать эволюцию на реализацию череды важнейших событий для появления жизни. Речь идет о таких явлениях, как: 1- формирование базальтовой литосферы, 2- раскол её на множество плит, 3- постоянное перемещение этих литосферных блоков на протяжении уже более 4 млрд. лет, 4- формирование Мирового океана с его особой океанической корой и его существование более 4 млрд. лет, 5- реализация циркуляции энергии и вещества между всеми оболочками Земли (ядром, мантией, литосферой, гидросферой и атмосферой), 6- направление развития планеты на формирование континентальной коры и материков.

Важной особенностью нашей планеты является не только сама реализация эволюции по Континентальному направлению, но формирование такого удивительного соотношения объема океанов и материков, которое всегда обеспечивало широчайшие возможности для эволюции живой природы. Наличие континентов предоставило возможность живым организмам выйти из океанов на сушу, где среди огромного разнообразия микроорганизмов, грибов, растений и животных появились современные люди. Кроме того, эта развилка направила геологические процессы в сторону концентрации в континентальной коре ресурсов самых разных твердых, жидких и газообразных полезных ископаемых. Без огромного числа месторождений нефти, газа, угля, урана, металлов и многих других полезных веществ в недрах всех континентов невозможно представить развитие человеческого общества.

Рельеф земной поверхности подвергся значительному усложнению после начала действия тектоники плит, особенно после появления континентальной коры. Значительно увеличились глубины океанических впадин. Важным этапом в формировании Мирового океана явилось образование континентов, гор, больших впадин и других форм рельефа земной коры. Заглядывая вперед, отметим, что в течение двух миллиардов лет (от 4,2 до 2,2 млрд. л.н.) сформировалось, по разным оценкам, от 50 до 80 % площади современной континентальной коры. Эта кора была представлена множеством материков, которые за указанный срок успели столкнуться в три суперконтинента (Ваальбара, Ур, Кенорленд) и затем расколоться на новый набор отдельных блоков суши. Образование и распад суперконтинентов имеет циклический характер, который зависит от изменения в режимах конвекции вещества планеты. Понятно, что изменения в конвекции происходили так же циклически. Продолжительность периода от одного суперконтинента до другого в среднем составляет 600–700 миллионов лет. Всего за историю Земли дрейф континентов привел к образованию семи суперконтинентов. Человечество распространилось на обломках седьмого суперматерика – Пангеи, которые представлены шестью нынешними материками.

Венера, Марс, Луна и некоторые спутники газовых планет-гигантов, подобно Земле, в своем развитии прошли через Литосферную развилку эволюции планет, а некоторые из них даже через Океаническую эволюционную развилку. Однако для каждого из этих космических тел повороты на эти направления имели свои неповторимые последствия. На этих планетах и спутниках, кроме Марса, поворот эволюции на Литосферное направление также обеспечил образование базальтовой литосферы и даже некоторые проявления плюмовой тектоники, но дальше развитие не пошло. По современным данным, на Венере, Луне и спутниках Юпитера и Сатурна не было плитной тектоники, которая создала бы условия для появления континентальной коры – носителя всей сушу, без которой не возможно зарождение и развитие животных, обитающих на суше. Конечно, имеет смысл рассуждать о вероятности появления наземных обитателях только в том случае, если на этих космических телах были океаны, населенные водными живыми организмами. На соседнем Марсе выявлена гравитационная аномалия размером с земную Европу, в пределах которой толщина коры составляет около 50 км. По мнению ученых, эта аномалия соответствует континенту среди марсианской океанической коры, который сформировался в начальный период существования этой планеты. Возможно, в этот период на Марсе происходило движение глобальных литосферных плит, т. е. имела место тектоника плит и появились первые блоки континентальной коры. К сожалению, эволюция марсианской коры по направлению к жизни происходила только на протяжении первых приблизительно 350 миллионов лет начальной истории Марса, а затем ядро остыло, отвердело, геологические процессы прекратились. Дальнейшая эволюция этой планеты свернула на специфическую марсианскую Криосферную развилку эволюции планет, не ориентирующую на развитие живых организмов, если таковые и были в марсианском океане до его исчезновения.

Поверхность Земли после формирования первых блоков континентальной коры разделилась на две основные части – океаническую и континентальную. Названия этих частей отражают планетарный рельеф, который тесно связан с разным строением и составом земной коры. Океаны простираются над океанической корой толщиной, как правило, 3 – 12 км (в среднем 4–6 км). Материки являются частью континентальной коры. В результате перехода эволюции Земли через Континентальную развилку литосфера в глобальном плане приобрела ассиметричное строение: полушарие с континентальной корой имеет более дифференцированное строение, чем противоположное океаническое полушарие. Литосфера на континентах и в океанах имеет разное строение. Под континентами литосфера отличается обоими своими компонентами – верхней мантией (волноводом) и корой. Со временем общий объем земной коры постепенно увеличивается за счет наращивания толщины и, в том числе, прирастает континентальная кора. В настоящее время масса всей земной коры составляет около 0,5 % общей массы планеты. Масса материковой коры достигает 79 % массы земной коры, на долю океанической коры приходится 21 %. В то же время, континентальная кора покрывает только 40 % поверхности земного шара, формируя континенты и крупные острова, а также мелководные зоны морей и шельфов океанов. Большой объем континентальной коры обусловлен её значительной толщиной в сравнении с таковой океанической верхней твердой оболочки.

Характеризуя континентальную кору в нынешнем её виде, отметим, что она обладает резкой неоднородностью, как по структуре, так и по составу. Её толщина составляет 20 км в рифтовых зонах растяжения, 80 км в условиях сжатия, достигая 90 км в горно-складчатых поясах – например, в Тибете. Химический состав значительно варьирует даже на коротком расстоянии. В общем виде континентальная кора состоит из трёх частей: нижнего – базальтового слоя (по новой терминологии – из нижней коры), среднего – гранитного слоя (верхней коры) и верхнего – осадочного слоя. Континентальная кора в целом имеет значительно более древний возраст, чем океаническая: около 7 % горных пород континентов имеют возраст старше 2,5 млрд. лет. Сохранившаяся структура континентов представлена блоками (зонами) самого разного возраста. Установленный возраст древнейших пород соответствует 3,5 млрд. лет, но, возможно, существуют даже породы возрастом 4,0–4,2 млрд. лет. Наиболее молодые зоны континентов сформировались в Альпийско-Гималайском складчатом поясе. Этот тектонический пояс появился в альпийскую эпоху складчатости[40 - Альпийская эпоха складчатости – одна из крупнейших эпох тектогенеза в истории Земли, осложняющая земную кору в последние 50 млн лет (кайнозой).], максимальная активность которой была около 35 миллионов л.н. Эта новая кора возникла, когда Индийская плита дрейфовала из Антарктики на север и врезалась в Евразийскую плиту. Поскольку столкнулись две континентальные плиты с приблизительно одинаковой плотностью, то они вздыбились вверх, сформировав высоченные Гималаи.

Нижняя кора (по старой терминологии – базальтовый слой) континентов практически не изучена прямыми методами – все представления о её составе базируются на геофизических (в основном сейсмических) данных. Нижняя кора состоит из излившихся базальтовых пород основного состава. Она содержит кварца – SiO2 от 40 до 52 %, много алюминия, кальция, железа, магния и немного натрия и калия, которые выплавились из верхней мантии. Кроме того, здесь присутствуют древние метаморфические породы, переработанные внедрениями магмы основного состава. Среди метаморфических пород, вероятно, преобладают различные сланцы и гнейсы основного состава, с большим содержанием железа. Средняя плотность нижней коры 2,75 – 3 г/см3.

Верхняя кора (по прежней терминологии – гранитный, гранитно-гнейсовый, гранитно-метаморфический слой) материков сложена гранитами – бедными магнием легкими породами, гнейсами и другими метаморфическими и изверженными породами. Средняя плотность верхней коры (2,7 г/см3) – меньше, чем нижней коры. Гранит является магматической горной породой, наиболее распространенной в земной коре континентов. В его состав входят в основном кварц (SiO2), калиевый полевой шпат (K[AlSi3O8]), кислый плагиоклаз и слюды. Мощность гранитного слоя весьма изменчива. На материках она достигает 30–35 км, выклиниваясь в океанах. Люди издревле используют граниты в качестве красивого, крепкого, долговечного строительного материала. Порода гранит является визитной карточкой Земли, поскольку нигде больше в Солнечной системе такое химическое соединение не выявлено.

Осадочные отложения, залегающие на континентальной коре, образуют осадочный слой материков. Этот слой неравномерно распределен в пределах континентов. Так, на кристаллических щитах осадочные отложения отсутствуют, например, на Балтийском щите, а в осадочных бассейнах и в складчатых сооружениях они достигают толщины в несколько десятков километров. Отложения осадочного слоя образованы в поверхностных условиях путем переотложения разнообразных пород, разрушенных физическими или химическими процессами. Они образуются также в результате химического или механического выпадения осадка из воды, жизнедеятельности организмов или совокупности всех этих факторов. Таким образом, породы разделяются на обломочные, химические и биогенные (органогенные). Преобладают глинистые породы (около 50 %), песчаные и карбонатные породы в сумме составляют около 45 %. Осадочный слой на некоторых участках пронизан внедрениями магматических пород. Плотность осадочных пород (2,6–2,65 г/см3) меньше гранитов и, тем более, базальтов. Поэтому они и располагаются в верхней части коры.

Практически весь осадочный слой является комплексом полезных ископаемых для людей. В нем сосредоточены необходимые людям образования неживой природы, а также скопления продуктов жизнедеятельности организмов. Так, производными погибшего планктона древних морей являются углеводородные газы, нефти, горючие сланцы и другие углеводородные образования – огромнейшее разнообразие соединений, главным образом, из углерода и водорода. Из отмерших растений древних болот и озер образовались торфы и угли разной степени преобразованности (бурые, каменные, антрациты, графит) – концентраты углерода. Во многих месторождениях этих горючих ископаемых сохранилась энергия Солнца, накопленная живыми организмами за последние более 2 млрд. лет. Живые организмы в данном аспекте представляются естественными формами материи, которые обеспечивают исключение из круговорота и концентрацию вещества-энергии.

Захоронения в недрах осадочного комплекса Земли этих твердых, жидких и газообразных соединений обеспечили изъятие из круговорота достаточно больших объемов углерода, водорода, кислорода, азота и ряда других химических элементов. Природа, как бы специально подготовила запасы энергии для того, чтобы в будущем использовать их в своей эволюции. В углеводородах содержится энергии больше, чем в другом веществе Земли. Необходимо было появиться человеку, который использовал данные горючие полезные ископаемые для своего благополучия, чтобы включить их снова в круговорот химических элементов. Кроме горючих веществ осадочный слой содержит многие другие важнейшие металлические и неметаллические полезные ископаемые (скопления минералов в коре, которые могут быть использованы человечеством для своих нужд). Группа металлических ископаемых включает самородные металлы (золото, платина, серебро и другие); руды черных, цветных, редких, редкоземельных металлов и редкоземельных элементов. К неметаллическим ископаемым относится горнохимическое сырье: различные соли, гипс, барит, сера, фосфориты, апатиты. Кроме того: огнеупорное, электротехническое, пьезооптическое, тепло- и звукоизоляционное, кислото – и щелочноупорное сырье. А также: строительные материалы; драгоценные, поделочные и технические камни.

2.5.2. Гидрожен и Оксижен – в раскаленной мантии Земли

Многие события, вызванные поворотом эволюции Земли на Континентальную развилку, происходили при участии гидов-водородов. Так, после Океанической развилки Гидроженная водяная молекула перемещалась океаническими течениями по первичному океану на протяжении более 100 млн. лет. Уже эволюция планеты прошла через Континентальную развилку, когда в зоне спрединга, в процессе растяжения океанической коры и формирования нового базальтового слоя, Гидрожен вместе с огромными массами океанической коры провалился по глубинным разломам в раскаленные недра Земли. Какая-то часть этой воды пошла на образование особых минералов – серпентинов из раскаленных пород мантии, но Гидроженная молекула воды не попала в эти химические реакции. Гидроженная молекула присоединилась к тем потокам океанической воды, которые взаимодействовали с горячей мантией, обогатились многими химическими элементами, сильно нагрелись, отчего стали легкими. Поэтому эти – уже гидротермальные воды вместе с Гидроженом устремились к местам, где они могли через многокилометровые толщи земной коры проникнуть в верхние слои планеты – на дно океанов. Такими местами были трубообразные минеральные сооружения высотой в несколько десятков метров, напоминающие подводный «Потерянный город», ныне существующий в районе срединно-океанического хребта Атлантического океана. Конечно, в те времена, о которых речь идет в данном разделе, не было Атлантического и других, современных нам, океанов. Однако в том, древнейшем Палеоокеане, несомненно, существовали зоны субдукции, в которых были подводные термальные источники, подобные нынешним, с такими же карбонатными столбами высотой с 18-этажный дом на океаническом дне. Гидроженная молекула гидротермальной воды в восходящем потоке горячих вод проникла в поры (в пустоты коллектора) гидротермальной постройки около 4,1 млрд. л.н., где благодаря удивительной случайности встретила молекулу Карбомалного гликольальдегида. О результатах химической реакции между этими носителями атомных гидов узнаем попозже, когда астероид с Карбомалом прибудет на Землю.

Дрейфующая океаническая плита с кристаллом Оксиженого форстерита после Континентальной развилки, около 4,15 млрд. л.н., столкнулась с Протоафриканской океанической плитой. В этой зоне субдукции часть океанической плиты с Оксиженым форстеритом оказалась поддвинутой под будущую Африканскую плиту и постепенно погрузилась в пекло верхней мантии. Породы перидотитового и базальтового слоев Протоафриканской плиты расплавились. Часть расплава продолжила погружение вплоть до ядра, а другая, с более легкими соединениями, устремилась вверх к поверхности планеты. Хорошо, что температура магмы была немного ниже точки плавления кристалла форстерита с Оксиженом при том высоком давлении, которому был подвергнут этот минерал в месте его нахождения. Поэтому этот кристалл не расплавился, а устремился с базальтовой магмой вверх. Конечно, Оксижен не пропал бы даже в случае расплавления кристалла, но судьба у него была бы не той, которая свершится в случае союза с форстеритом. Дальнейший путь Оксижена показал, насколько определяющими для будущего являются свойства объекта и его попадание в благоприятные условиях.

Расплавленные базальтовые породы с кристаллом Оксиженого форстерита в процессе всплывания к океаническому дну вступили в химическую реакцию с проникшей вниз океанической водой. В результате сформировалась новая магма кислого состава – гранитная, которая проникла на поверхность южной части Протоафриканской океанической плиты. Эта, более легкая кислая магма растеклась гранитным слоем на базальтовой толще, преобразовав эту часть океанической коры в континентальную кору. Постепенно накопилась такая большая масса гранитов, что возник первый остров – материк c Оксиженым форстеритом. С тех пор Оксижену было суждено еще более 500 млн. лет дрейфовать в составе блока континентальной коры, впаянного в океаническую кору Протоафриканской плиты. Движение этого блока продолжалось вокруг земного шара по астеносфере до образования первого суперконтинента Ваальбара 3,6–2,8 млрд. л.н. Затем Оксиженый форстерит участвовал в других интересных приключениях, о которых речь пойдет выше.

Карбомалный, Нитроженный и Ферумный астероидыпосле Континентальной развилки продолжали кружить вокруг Солнца в Поясе астероидов. Их движение происходило по орбитам вокруг Солнца в том же направлении, что и планеты. Пояс астероидов – совокупность множества движущихся объектов разных размеров, как правило, неправильной формы, расположенных на больших расстояниях друг от друга. Поэтому астероидов не сталкивались прежде и сейчас их встречи – маловероятны. Период обращения астероидов вокруг Солнца к рубежу около 4,15 млрд. л.н. изменился приблизительно от 3,5 до 6 лет благодаря увеличению большой полуоси орбиты. Такое вытягивание орбит многих астероидов, включая траектории космических объектов с нашими гидами, происходило благодаря постепенному гравитационному воздействию Юпитера. В результате, к периоду 4,1–3,8 млрд. л.н. орбиты многих астероидов пролегали через внутреннюю область Солнечной системы, где расположена земная группа планет.

Глобальные процессы в глубинных недрах Земли обеспечили не только поворот эволюции литосферы на формирование континентов – на Континентальную развилку, но одновременно направили общую эволюции Земли на образование магнитного поля – на Раннюю геомагнитную развилку. Появление магнитного поля у нашей планеты стало одним из важнейших условий продолжения антропного маршрута эволюции природы по пути к человечеству.

2.6. Ранняя магнитная развилка эволюции Земли. 4,2 миллиарда лет назад

Земля всегда – от момента своего формирования до нынешних дней – находится под постоянной атакой космических излучений всей Галактики, среди которых максимальная доля приходится на потоки энергии от Солнца. Наша звезда распространяет вокруг себя энергию в виде электромагнитного излучения, а также беспрестанно поставляет в космос и на Землю поток частиц – корпускул. Корпускулярное излучение (солнечный ветер) – постоянный поток солнечного материала, распространяющийся далеко за пределы орбиты Плутона. Солнечный ветер содержит многие элементы звездного вещества: нейтрино, электроны (бета-излучение), протоны (ядра водорода), альфа-частицы (альфа-излучение, ядра гелия), а также в малой доле тяжелые атомные ядра.

При этом следует учитывать, что сила солнечного ветра в те времена приблизительно в 100 раз превышала нынешнее излучение. Непрерывное воздействие «стерилизующей» космической радиации, возможно, задержало начало биогенеза на несколько десятков миллионов лет. Солнечный ветер разрушал и постепенно уносил газовую оболочку планеты. Первые атмосферы – Ранняя гелиево-водородная и Вторая углекисло-водяная смогли удержаться у Земли только по 30 млн. лет, с 4,51 млрд. до 4,45 млрд. л.н. Третья водно-азотно-углекислая атмосфера просуществовала значительно дольше – 350 млн. лет (от 4,45 до 4,1 млрд. л.н.), благодаря тому, что в состав атмосферы стали входить более плотные газы, которые надежнее удерживались силой тяжести Земли.

Кроме того, фактором, продлявшим существование третьей и последующих атмосфер, стало появившееся магнитное поле, окружившее Землю около 4,2 млрд. л.н. Конечно, это, Раннее геомагнитное поле не было настольно надежным, каким стало последующее – Позднее геомагнитное поле (см. Поздняя магнитная развилка эволюции Земли – 550 млн. л.н.). Раннее магнитное поле Земли, скорее всего, не очень хорошо защищало атмосферу от уносящего воду мощного потока молодого Солнца потому, что было слабым, напряженностью по разным оценкам от 10 % до 50 % нынешнего. Так, сила магнитного поля на поверхности Земли в то время составляла около 0,6 микротесла (мкТл), а ныне колеблется в среднем от 25 до 65 мкТл. Появление магнитного поля означало следование эволюции Земли через Раннюю магнитную развилку, что обеспечило формирование необходимых, но, конечно, далеко недостаточных условий для формирования сознательных существ. Человечеству повезло, что эволюция нашей планеты прошла через эту развилку. Ведь не все планеты Солнечной системы и тем более Галактики сформировали свои магнитные поля. Даже среди обладавших магнетизмом планет не многие смогли генерировать магнитное поле достаточно продолжительное время, необходимое для изобретения живых существ и их развития до чрезвычайно сложных форм.

Возникшее геомагнитное поле заставляло основной поток губительных частиц обтекать Землю и следовать дальше в космос. Та часть солнечного ветра, которой удалось проникнуть к планете, отклонялась геомагнитным полем в сторону южного и северного полюсов. Эти заряженные частицы, перемещаясь к магнитным полюсам по спиралеобразным траекториям, теряют почти всю свою смертоносную энергию. Лишь малая их доля прибывает в нижние слои атмосферы в полярных областях, вызывая полярные сияния. Так что, магнитное поле Земли защищает атмосферу, гидросферу и все живое от губительного воздействия космических частиц, прежде всего от солнечного ветра. Радиационное облучение и бомбардировка высокоэнергетическими частицами всей поверхности планеты во время существования Раннего магнитного поля, как и в последующие периоды ослабления магнитного поля, были более мощными по сравнению с Поздним магнитным полем (см. Поздняя магнитная развилка). То есть, излучения в такие эпохи сильнее воздействовали на все земные оболочки и тем более на живые организмы, если они уже появились.

2.6.1. Магнитное поле – фактор стабильности жизни

Что такое геомагнитное поле и как оно появилось? Упрощено говоря, магнитное поле Земли – это пространство с действующими магнитными силами вокруг внутриземного магнита. Геомагнитное поле распространяется из земных недр в космос, где подвергается воздействию солнечного ветра и космического излучения. Раннее магнитное поле генерировалось электрическими токами, которые вызывались турбулентной конвекцией в верхней, жидкой части мантии, покрывавшей уже отвердевшую нижнюю часть мантии. В тот период жидкая часть мантии была достаточно электропроводна, чтобы поддерживать образование магнитного поля. Кроме того, жидкая часть мантии отличалась пониженными значениями температуры и давления по сравнению с аналогичными параметрами в нижней твердой мантии, что обеспечивало успешную реализацию электромагнитного процесса. Такой естественный механизм образования магнитного поля называют геодинамо. Можно сказать, что Ранее магнитное поле во многом обязано своим происхождением благоприятному сочетанию объема, состава и структуры мантии тех времен.

Земное ядро тогда было очень горячим и еще полностью жидким. Гораздо позже – около 550 млн. л.н. – после кристаллизации внутреннего ядра возникло Позднее магнитное поле, которое стало генерироваться во внешнем, расплавленном, металлическом, электропроводящем ядре благодаря его взаимодействию с внутренним твердым ядром. В этом случае главным источником энергии является тепло, исходящее от внутреннего ядра. Циркуляция тепла обеспечивает постоянное перемешивание металлического расплава внешнего ядра. Происходит теплообмен, возникают конвективные потоки и, как следствие, электричество. Но сейчас вернемся к Ранней магнитной развилке.

Структура Раннего магнитного поля в чем-то отличалась от современного магнитного поля, но об этом имеется очень мало фактических сведений. Поэтому ознакомимся со строением современного геомагнитного поля, которое включает три составляющие части: главное поле, поля мировых аномалий и внешнее магнитное поле. Главное поле имеет своим источником внешнее жидкое ядро Земли (а до этого источником была внешняя жидкая оболочка мантии) и вблизи поверхности представляет собой полосовой магнит с осью, направленной приблизительно с севера на юг. Центр этого магнитного диполя смещен относительно центра Земли, а ось наклонена к оси вращения планеты на угол около 10°. Поля мировых аномалий созданы мощными массами намагниченных горных пород, расположенных в земной коре, вблизи поверхности. В качестве примера магнитной аномалии уместно привести Курскую магнитную аномалию, сформированную под воздействием огромных запасов железных руд. Параметры этих локальных полей – магнитных аномалий сильно отличаются от значений в смежных районах. С точки зрения защиты Земли от космических частиц нас интересует, прежде всего, внешнее магнитное поле – магнитосфера. Нижняя граница магнитосферы расположена в верхней части атмосферы (100 км и выше), где молекулы воздуха ионизированы и образуют плотную холодную плазму, которая удерживается магнитным полем Земли. Магнитосфера имеет сложную форму: в направлении Солнца распространяется на расстояние в среднем до 10 земных радиусов (радиус Земли составляет 6371 км), а с ночной стороны формируется магнитный шлейф длиной две сотни земных радиусов. Средняя скорость солнечного ветра (протонов, электронов и др.) в районе земной орбиты – огромная, около 400 километров в секунду, плотность потока – довольно высокая, несколько десятков частиц в 1 см3. Магнитосфера Земли играет роль особого экрана (щита), защищающего планету от разрушающего влияния солнечного ветра и космических излучений. Частицы солнечного ветра и космические излучения, отклоненные геомагнитным полем, концентрируются в радиационных поясах Земли (поясах Ван Аллена).

Земля теряла гораздо меньше своего газообразного и жидкого вещества по сравнению с теми объектами Солнечной системы, у которых отсутствует магнитное поле[41 - Магнитное поле отсутствует у Марса и Венеры. У Меркурия магнитное поле составляет только около 1 % от поля Земли.]. Раннее магнитное поле, пронизывая литосферу, гидросферу и атмосферу, оказывало влияние на климат и погоду, создало условия, благоприятные для зарождения жизни, а также для развития живых организмов на первых этапах биотической истории Земли. Вспомним также о воздействии характеристик магнитного поля на такие важные факторы эволюции живых организмов, как наследственность и изменчивость. Посредником влияния магнитного напряжения на организм выступают молекулы воды. Магнитное поле вмешивается в ход физико-химических и биологических процессов организма через жидкокристаллические структуры воды в белках и других соединениях. Квант энергии магнитных полей изменяет метаболические процессы[42 - Метаболизм или обмен веществ – совокупность сложных химических реакций в организме для поддержания жизни, которые обеспечивают рост и размножение организма, превращание калории пищи в энергию, необходимую живому организму для жизнедеятельности.] в клетке и проницаемость мембран. Нынешний облик Земли был бы совсем иным, если бы в её эволюции не случились геомагнитные Ранняя (4,2 млрд. л.н.) и затем Поздняя (550 млн. л.н.) развилки.

Поворот эволюции Земли на Ранней магнитной развилке завершил подготовку планеты к образованию живых существ из неживой материи. Земля по мере своей эволюции приобретала к отметке около 4,1 млрд. л.н. те характеристики и условия, которые были необходимы для зарождения жизни и для её эволюционного усложнения.

3. БИОТИЧЕСКИЙ ЭТАП ЭВОЛЮЦИИ ЗЕМЛИ НА ПУТИ К ЧЕЛОВЕЧЕСТВУ

До рубежа около 4,1 миллиарда л.н. эволюция Вселенной по маршруту к человечеству происходила в неживой природе, не проявляя каким—то явным образом свой потенциал создания форм материи, способных осознать свое существование, исследовать окружающее пространство, тем самым активно сопротивляться вселенскому законы энтропии, т. е. тенденции разрушения любых объектов. Тем не менее, ретроспективный взгляд на ход развития природы через выше рассмотренные эволюционные развилки позволяет наблюдать нарастающее усложнение форм неживой природы со временем. Химическая эволюция вещества во Вселенной от водорода до урана и до образования огромнейшего числа их соединений привела к появлению нового направления развития природных форм, которое называем биотическим. Существует много разных гипотез о возникновении живых организмов. Автор данных строк придерживается мнения тех ученых, которые доказывают абиогенное происхождение жизни, т. е. спонтанное превращение неживого вещества в живой организм. Такой процесс обозначается, словом абиогенез.

В тот момент, когда на Земле возник первый живой организм, эволюция природы совершила принципиальный, качественный скачок от геологического развития к биотической эволюции. Среди неживых объектов появились существа, которые стали интенсивно размножаться и успешно адаптироваться к окружающей среде. Тем самым повысилась вероятность появления людей, но первым живым организмам до этого события предстояло эволюционировать еще более 4 млрд. лет по антропному маршруту в границах Биотического этапа развития планеты. А что считать первым живым организмом, с которого начался Биотический этап эволюции Земли? Для этого следует сформулировать понятие жизни. В качестве наиболее общей формулы живого существа подходит определение Американского космического агентства НАСА, которое занимается помимо всего космического прочего, также вопросами поисков внеземной жизни. НАСА определяет жизнь как химическую систему, способную к дарвиновской эволюции. Речь идет о том, что комплекс молекул становится живым организмом, если он способен к наследуемости (созданию копий, репликации, размножению), обладает изменчивостью (копии в чем-то отличаются от родителей, имеют генетические мутации, которые передаются по наследству) и подвержен отбору (копии с разными изменениями имеют различную вероятность последующего копирования). Наверное, следует добавить к этому определению такое необходимое свойство для жизни, как способность получать и перерабатывать энергию, необходимую для выполнения всей этой работы.

Приведем еще одно определение (Толкачёва В.Ф.): «Жизнь – это часть процессов бытия объектов Вселенной, являющаяся симметричной реакцией на другую часть процессов во Вселенной, идущих с повышением энтропии. Жизнь характеризуется самосохранением и саморазмножением живых объектов путём самосовершенствования их структур в направлении повышения их устойчивости за счёт организации взаимодействия с другими объектами при их движении сквозь свою среду и относительно них с использованием собственной информации об уже совершившихся актах бытия…».

Первое определение характеризует саму жизнь, второе заслуживает внимание в основном потому, что указывает на важное свойство жизни – активно сопротивляться одной из главных сил во Вселенной – энтропии (упрощению говоря, беспорядку). Жизнь стремится создавать все более сложные системы, которые могли бы приспосабливаться к меняющимся внешним условиям, продляя тем самым время своего существования. Каждый живой индивидуальный организм существует недолго и распадается на исходные простейшие составные части – химические элементы. Однако общая система всех живых существ – жизнь – действует и эволюционирует в направлении бессмертия, т. е. сохранения сложных форм материи. Конечно, успехи жизни в борьбе с энтропией всегда являются привязанными к какому-то, скорее всего, локальному участку той или и иной галактики, и к определенному временному отрезку истории этого участка. Так что маловероятно, чтобы эволюция живой природы повлияла на эволюцию какой-то звездно-планетной системы, тем более целой галактики.

Все живые организмы на Земле выполняют перечисленные задачи с помощью трех классов сложных органических соединений: дезоксирибонуклеиновых кислот (ДНК), рибонуклеиновых кислот (РНК) и белков. Биологическая роль ДНК заключается в хранении и воспроизведении генетической (наследственной) информации. РНК обеспечивает считывание этой информации и осуществляет синтез белков в соответствии с записанными в молекуле ДНК «инструкциями». В процессе строительства белков РНК выступает посредником между ДНК и белками. Белки – необходимый компонент каждой клетки организма, важная часть костей, мышц, хрящей, кожи и крови. Белки выполняют в организме разнообразные функции: транспортную, защитную, структурную, двигательную, рецепторную и другие.

Человечество на протяжении всего своего существования задавалось вопросом о происхождении жизни, на который пока не получено однозначного ответа. Скорее всего, люди никогда не узнают точно, череда каких событий и химических реакций создала сложнейшее соединение, способное к дарвиновской эволюции. К сожалению, даже, если в лабораторных условиях удастся создать живой организм, то и тогда это не станет доказательством именно такого происхождения жизни на Земле. Может быть, поэтому существует так много гипотез и даже ненаучных представлений на этот счет. Тем не менее, ученые не прекращают изучение происхождения жизни, и многие идеи уже нашли подтверждение в результате новых, передовых исследований. В данном обзоре приводится схематическое отражение наиболее научно обоснованной и разделяемой большинством специалистов версии появления и эволюции живых существ. Эволюция планеты на Биотическом этапе развития началась с Предклеточной или, по-другому называя, Допрокариотной развилки.

Эволюции Земли подошла к повороту на Предклеточной развилке, завершив подготовку всех условий для синтеза сложнейших химических соединений, способных продлять свое существование путем самокопирования, размножения. Еще раз отметим важную роль в эволюции Земли тектоники плит, которая наряду с другими процессами обеспечила обмен вещества между мантией, литосферой, гидросферой и атмосферой. Постепенно обновлялся химический состав атмосферы и верхних слоев земной коры. На поверхности и в интервалах разных глубин появлялись новые горные породы и минералы. К моменту образования первых живых организмов в распоряжении природы находилось более 1500 разных минералов в виде твердых и расплавленных веществ, а также множество химических соединений в водорастворенном и газовом состоянии. Планета подобно огромному миксеру непрерывно перемешивала своё вещество, что приводило к возникновению все новых и новых вариантов взаимодействия химических элементов в самых разных физико-химических условиях. У этих объектов неживой природы уже были заложены зачатки тех свойств, которые превратятся у живых организмов в необходимые факторы, определяющие жизнь – наследственность и изменчивость. Базовым свойством наследственности является постоянство, а в основе эволюции лежит изменчивость. Минералы и иные не биотические соединения не имеют генов, но, тем не менее, обладают этими двумя важнейшими качествами: постоянством структуры и способностью изменять её, образуя многочисленные формы. Например, кальцит (CaCO3) имеет постоянную гексагональную кристаллическую решетку, но образует более 2000 комбинаций кристаллографических модификаций. Еще пример, все кристаллы снега (воды) сохраняют гексагональную структуру, но при этом формируют тысячи различных комбинаций ветвящихся структур. Способности минералов кристаллизоваться в разнообразные формы и наращивать размеры кристаллов эволюционировали в умение определенных обособленных химических соединений создавать свои копии. Естественный отбор также не является уникальным изобретением организмов. Так, в течение более 400 миллионов лет после образования Земли возникали удивительные по форме и свойствам минеральные соединения с разными способностями противостоять процессам разрушения. Естественным образом происходил отбор самых стойких химических образований, которые выделялись способностью длительно не разрушаться, увеличивать свой размер за счет наращивания граней кристалла или путем формирования минеральных агрегатов (друз) в виде сросшихся между собой кристаллов. Так, что основные свойства живых существ сформировались на основе базовых качеств химических форм неживой природы. Эволюционное преобразование неживой природы в первые живые организмы стало возможным благодаря движению земного вещества, что и обеспечивала, главным образом, тектоника плит.

Биотический этап эволюции природы являлся самым продолжительным и очень сложным периодом истории Земли. В течение более 4 млрд. лет череда многочисленных закономерных и случайных событий в неживой и живой природе прокладывала извилистый эволюционный путь к Человечеству. Начало Биотического эволюционного этапа совпало по времени с такими глобальными событиями, как: вступление планеты в третий тепловой этап, появление четвертой атмосферы и тяжелая астероидно-кометно-метеоритная бомбардировка. Эта часть антропного маршрута прошла через множество эволюционных перекрестков, из которых выбрано 38 важнейших развилок. Каждой из этих развилок посвящен отдельный раздел.

3.1. Предклеточная (Допрокариотная) развилка эволюции Земли на пути к человечеству. Зарождение жизни. Около 4,1 миллиарда лет назад

Все живые организмы созданы из тех же 92 химических элементов, из которых образована Земля, да и все объекты Вселенной, представленные обычным веществом. Химические элементы, возникнув миллиарды лет назад, последовательно участвовали во множестве природных экспериментов по созданию объектов, наиболее устойчивых к разрушающему влиянию процессов энтропии. Они напоминают маленькие детали гигантского конструктора, из которых создаются, разрушаются, вновь образуются разные вещественные формы. Весь этот вселенский процесс имеет генеральное направление из прошлого в будущее и от простоты хаоса к сложности порядка. Но эта общая тенденция прогресса включает сумму конкретных событий создания и разрушения сложных форм. Каждая конкретная попытка стать вечностью заканчивается распадом на составные элементы. В неживой природе происходит отбор форм материи на устойчивость. В живой природе подобным образом осуществляется эволюция организмов благодаря естественному отбору наиболее приспособленных особей. Эволюция является свойством жизни.

Наиболее древние свидетельства жизни в виде высокого содержания легких (биологических) изотопов углерода в минералах оцениваются возрастом 4,25 млрд. лет. В эти времена температура формирующихся океанов составляла ~200°С, но вода не кипела благодаря существованию тяжелой атмосферы, богатой высокоплотным углекислым газом. Возможно, эти ранние образцы биологических соединений выступают свидетелями одного из самых первых экспериментов природы по синтезу сложных, самокопирующихся молекул. Скорее всего, до появления удачного варианта органического репликатора существовало огромное число других версий химических соединений, которые не выдержали конкурса естественного отбора. Может быть, в эти первые десятки миллионов лет присутствия океанов на Земле еще не возникла та совокупность многообразных факторов, которые обеспечили не только появление эффективного репликатора[43 - Репликатор (от лат. replicatio – «возобновление») – неклеточная формой жизни, способная к репликации то есть к размножению, раздвоению с определёнными наследственными изменениями. В соответствии с теорией зарождения жизни первый репликатор являлся предком для всего живого.] (пояснение термина можно смотреть по соответствующему номеру 43 в разделе "Ссылки…" в конце книги), но и предоставили условия для его размножения. Только к рубежу 4,1 млрд. л.н., т. е. спустя приблизительно 170 млн. лет после возникновения Мирового океана, развитие процессов в литосфере и, в частности, в океанической коре обеспечили счастливую совокупность условий для зарождения наших наипервейших предков – первых успешных вариантов протожизни.

Этот рубеж примечателен тем, что эволюция Земли за 100 млн. лет после Континентальной развилки реализовала немало прогрессивных преобразований на пути к появлению жизни. Особенно важными в этом отношении являются результаты развития атмосферы, гидросферы и континентов. К рубежу около 4,1 млрд. л.н. планета вступила в третий этап тепловой истории, названный «Знойная Земля». Знойная планета характеризовалась продолжающимся постепенным снижением среднегодовой температуры поверхности от 95°C до 40°C в течение 4,1–3,8 млрд. л.н.

Уникальность Земли заключатся, в частности, в том, что тепловая эволюция её поверхности с рубежа около 4,1 миллиардов л.н. и до настоящего времени происходила без таких экстремумов, которые выходили бы за температурные границы обитания живых существ. Океаны после образования никогда не испарялись полностью и никогда не превращались целиком в лед. Среднегодовая температура воздуха и воды у земной поверхности никогда не превышала 50°C, при которой произошла бы пастеризация, т. е. исчезновение большинства организмов. При среднегодовой температуре 5°C и ниже происходит быстрое распространение ледников по планете.

Признавая, что на Земле всегда оставались благоприятные условия для существования жизни, следует иметь в виду многочисленные грандиозные изменения климата. В истории нашей планеты было немало катастрофических космических, геологических и климатических событий, которые подводили все живые существа на грань полного уничтожения. Биосфера всегда реагировала на такие стрессовые ситуации довольно быстрыми (в масштабах существования планеты) и значительными изменениями биотических систем. Сама планета после подобных катастроф запускала в действие те или иные стабилизирующие механизмы своей эволюции, которые всегда возвращали биосферу в тот диапазон условий, который обеспечивал продолжение прогрессивного, т. е. усложняющего развития живых организмов.

Для демонстрации преимущества нашего обитания на Земле приведем температурные сведения по планетам. На Меркурии поверхность одной стороны планеты прогрета до 465°C, а другая сторона – охлаждена до -184°C. На Венере поверхность раскалена до 460°C. На Марсе в экваториальной зоне поверхность прогрета до 20°C, а на полюсах остыла до -153°C. В облаках Юпитера отмечено -145°C. На Сатурне – еще холоднее (-178°C), но в разных полушариях температура отличается. Уран – самая холодная планета в Солнечной системе (-224°C). На Нептуне верхний слой атмосферы имеет температуру минус 218°C.

В результате активных извержений вещества из недр планеты, а также благодаря охлаждению поверхности Земли произошло изменение состава третьей атмосферы и образование 4,1 млрд. л.н. четвертой – Эоархейской углекисло-азотной атмосферы, которая просуществовала 600 млн. лет, до 3.5 млрд. л.н. Основными конкретными причинами образования четвертой воздушной оболочки выступили некоторые глобальные факторы, создавшие в это время определенную совокупность. Основным событием явилось извлечение практически всей воды из третьей атмосферы в результате конденсации (4,27 млрд. л.н.). Внесли свой вклад в преобразование атмосферы также некоторые другие факторы. Прежде всего, произошло сокращение доли углекислого газа (от 67 до 30 %) за счет его растворения в воде раннего океана. Кроме того, около 4,1 млрд. л.н. случилось резкое добавление глубинного азота (до 68 %) в газовую оболочку. Состав новой атмосферы постепенно стал преимущественно азотным. Содержание азота за относительно небольшой срок, по геологическим меркам, увеличилось от 60 % (4,1 млрд. л.н.) до 98 % (3,8 млрд. л.н.), углекислый газ уменьшился за этот же период с 20 % до 2 %. Сократилось содержание таких элементов, как: аммиака (от 1 % до 0,57 %), метана[44 - В атмосфере до 3,9 млрд. л.н. присутствовал метан глубинного (не биогенного) происхождения, а позже до 2,7 млрд л.н. уже биогенный метан вместе с углекислым газом выполняли роль парникового газа.] глубинного происхождения (от 0,25 до 0,14 %), аргона (от 0.01 до 0 %). Кислород в этой атмосфере отсутствовал вовсе. Земля была окутана плотной атмосферой, состоящей преимущественно из азота (N2) и в меньшей мере из углекислого газа (СO2). Давление столба газовой оболочки уменьшалось приблизительно от 2–3 до 1 атм., поскольку увеличивалось содержание азота, плотность которого (1,251 кг/м3) ниже, чем углекислого газа (1,9768 кг/м3).

Изменился также состав гидросферы. Вследствие уменьшения кислых летучих (углерода и углекислого газа), растворения в воде атмосферного аммиака и поступления с суши в океан силикатных минералов, увеличивался рН[45 - pH – водороодный показатель – мера кислотностиводныхрастворов.], т. е. уменьшалась кислотность океанической воды, постепенно приближаясь к нынешним значениям в океанах (7,5–8,5). Правда, химический состав океана на протяжении около 800 миллионов лет своей начальной истории (от 4,27 до ~ 3,5 млрд. л.н.) был подвержен значительным колебаниям. Только прекращение тяжелой астероидной бомбардировки (~ 3,8 млрд. л.н.) и начало Кислородно-фотосинтезной развилки эволюции планеты (3,5 млрд. л.н.) привело к достижению химического равновесия в океане.

В рассматриваемые времена продолжалось наращивание океанической коры в зонах спрединга (раздвижения тектонических плит), которое сопровождалось подводным вулканизмом с излияниями преимущественно базальтовой лавы и наличием множества активных горячих термальных источников двух типов – «белые курильщики» и «черные курильщики». Эти гидротермальные источники поставляли в океан из недр значительную долю тепла Земли и большой объем разнообразных минеральных веществ. Эта их деятельность не прекратилась и в наши дни. Активное формирование континентальной коры в зонах субдукции выражалось увеличением количества островов, и наращиваем их площадей.

Перечисленные грандиозные планетные преобразования совпали с тяжелой астероидно-кометно-метеоритной бомбардировкой, которая в тот же период (от ~4,1 до 3,8 млрд. л.н.) разрушила и переплавила часть океанической и континентальной коры.

В эту эпоху великих земных перемен, на рубеже около 4,1 млрд. л.н.[46 - В 2015 году американский журнал Proceedings of the National Academy of Sciences опубликовал статью, в которой на основании обнаруженного включения углерода в минерале циркон (ZrSiO

) подтверждается, что жизнь на Земле зародилась ~4,1 миллиарда лет назад.], произошел поворот эволюции планеты на Предклеточной развилке, которая ориентировала природу на формирование первых живых организмов и на их развитие. Начальная жизнь, по признанию большинства современных специалистов, была представлена каталитическими биомолекулами рибонуклеиновой кислоты (РНК), благодаря которым началась эволюция живой природы в форме «РНК-мира». Это сложное химическое образование выдержало конкурентную борьбу с теми прогенотами, которые были предшественниками генома РНК. Каталитическая РНК оказалась победителем в естественном отборе и превратилась в обязательный компонент любого живого организма. Поэтому РНК претендует на роль первой живой молекулы. О механизме и месте образования РНК-молекул – предклеточных биотических форм на Земле и об их превращении в первые клеточные существа сформулировано много предположений разной степени достоверности. Большинство специалистов считает наиболее убедительной гипотезу о последовательном возникновении из простых неорганических молекул сначала органических микросоединений, а затем – макрокомплексов со свойствами самовоспроизводства, наследования и изменчивости. В результате усложнения структуры и функций предшественников живых организмов произошел синтезе молекул РНК. Этот ранний этап формирования жизни связан с зонами подводных термальных источников.

Примером области, в которой мог происходить поэтапный синтез живой клетки является обнаруженный исследователями «Потерянный город» в Атлантическом океане. Там, на океаническом дне, в срединно-океанических хребтах, гидротермальные источники сформировали минеральные башни-столбы высотой от нескольких сантиметров до 60-метровой колонны (ей дали имя – Посейдон). Эти гидротермальные постройки – «белые курильщики» напоминают Потерянный город. Они образованы осаждением из растворов в основном карбонатных и серпентинитовых пород, в состав которых входит приблизительно 70 минералов (соединения металлов с оксидом кремния и гидроксильными группами кислорода и водорода, кальцит, доломит и многие другие). Умеренная температура в подводных горячих источниках (около 40–75°C), подщелоченной состав и наличие многих растворенных элементов формировали благоприятную среду для зарождения жизни. Такие зоны источников вещества и энергии с минеральными постройками существуют на Земле с рубежа около 4,27 млрд. л.н. – начиная с появления океанов над раздвигающимися литосферными плитами и до настоящего времени. В зоны раздвижения плит (спрединга) регулярно, на протяжении миллиардов лет поставляются из глубинных недр как простые, так и довольно сложные молекулы жизненно необходимых элементов. Речь идет об углероде, водороде, кислороде, азоте, сере, калии, железе, цинке, марганце и других (С, H, О, N, Р, S, K, Fe, Zn, Mn).

Следует иметь в виду, что вода термальных источников – это бывшая придонная океаническая вода, проникшая в недра по системе трещин. Нагревание относительно холодной океанической воды «белых курильщиков» происходило в недрах не за счет вулканической энергии, как в высокотемпературных «черных курильщиках, но благодаря выделению тепла при метаморфическом преобразовании базальтовых и ультраосновных (перидотитовых) пород океанической коры в серпентинит. Такой процесс серпентинизации пород представляет собой присоединение молекул воды, а также щелочных и щелочноземельных минералов к минералам базальта. В результате этого, одного из самых распространенных геохимических процессов на Земле, выделяются тепло, а также большие объемы абиотических (неорганических) молекул элементарного водорода и метана (CH4), которые имеют фундаментальное значение для происхождения жизни и для жизни микробов. Нагретая в недрах вода выщелачивает из базальтов большое число химических веществ, превращаясь в раствор многих элементов, соединений и газов. По гидротермальным постройкам горячая минеральная вода выходит на поверхность океанического дна, где попадает в резко отличные физико-химические условия. Происходят значительные преобразования, и разделение элементов флюида на части. Концентрированная часть химических веществ образует новую или достраивает постройку на дне, а рассеянные элементы поступают в океаническую воду и в осадки. Теплый флюид под давлением пропитывает пористые породы построек, в емкостном пространстве которых образуются различные соединения, включая углеродные. Частые землетрясения в зоне гидротермальных источников восстанавливают фильтрацию флюидов в коллекторах, если в них осадились минералы. В результате этих тектонических процессов происходят сильные гидравлические удары в коллекторах, что обеспечивает очистку фильтрационной системы от закупоривания минеральными кристаллами.

В океанических районах гидротермальной активности реализуется постоянная циркуляционная система с нисходящими (холодными) и восходящими (горячими) ветвями, осуществляющая обмен между основными сферами Земли. Установлено огромное поступление океанической воды в гидротермальную систему (в зонах спрединга и субдукции): около 5,7 тыс. т воды в секунду. Вся вода Мирового океана проходит через гидротермальный процесс геохимического преобразования каждые 3–8 млн. лет. Гидротермальная система Мирового океана за всю историю существования океанов вынесла из недр планеты гигантский объем тепла и вещества. В результате работы глобального конвейера по разрушению и созданию несметного число химических соединений были созданы условия для конструирования самовоспроизводящейся молекулы – основы жизни – за относительно короткий срок после формирования океанов, приблизительно за 150 млн. лет. Конечно, в этом деле природе помог Великий случай.

Природа выбрала углерод для строительства живых организмов не случайно, но благодаря тому, что эти атомы имеет очень крепкие связи между собой, обеспечивающие конструирование разнообразных органических химических соединений. Органические соединения обладают замечательным свойством – полимеризацией[47 - Полимеризация – образование сложных веществ из относительно простых (мономеров) с участием катализаторов.]. При этом, каждая полимерная молекула характеризуется своими особыми свойствами. Органическая сложная молекула способна соединяться с другой полимерной цепочкой или отрезать определенную её часть, а также способствует синтезу полимеров. В водном растворе химически активная сложная молекула присоединяет множество инертных молекул. Полимерная цепочка в процессе наращивания размеров сворачивается в клубки. В сложной цепочке, по мере изменения формы, появляются новые химически активные центры, которые отрезают некоторые части от соседних сложных полимеров и присоединяют их к себе. Таким образом, процесс эволюции органических соединений обусловлен основными свойствами самих углеродных молекул.

К сожалению, до сих пор не решены многие проблемы ранней эволюции жизни. Например, не существует общепринятых научных представлений о механизме, времени и месте формирования первых живых организмов. Отсутствуют сведения о структуре и функциях первых доклеточных образований, о строении и месте обитания последнего предка всех клеточных организмов (LUCA). Мы только предполагаем наличие общих генов у последнего универсального предкового состояния – ЛУКАС (LUCAS), как и у ЛУКА (LUCA), и у настоящих клеточных существах (прокариотах) – археях и бактериях. Поэтому некоторые события биологи вынуждены представлять на основании тех или иных косвенных предпосылок или следуя логике. Например, первые живые существа могли возникнуть только глубоко под водой из-за того, что во время реализации Предклеточной развилки над планетой отсутствовал озоновый слой. В этих условиях отсутствовала атмосферная преграда для солнечного коротковолнового ультрафиолетового излучения, губительного для РНК и ДНК. Любая жизнь на поверхности Земли, включая мелководье, была невозможной.

3.1.1. ЛУКАС – общий предклеточный предок всего живого на Земле

В настоящем обзоре излагается схематическое представление автора о ранней эволюции жизни, базирующееся на наиболее обоснованных гипотезах ведущих мировых специалистов в данной области. Суть концепции о доклеточной истории жизни сводится к абиогенному синтезу органических веществ, когда в пустотах порового пространства гидротермальных минеральных построек – в неорганических инкубаторах жизни произошло образование первых органических соединений, которые постепенно усложнялись до органических микромолекул-мономеров, низкомолекулярных органических соединений. На их основе сформировались разнообразные сегменты сложной молекулы рибонуклеиновой кислоты (РНК) и затем появился самовоспроизводящийся прото-РНК – первый репликатор, давший начало каталитическому РНК. Такой каталитический РНК можно отнести к последнему доклеточному прогеноту[48 - Прогенот – представитель предклеточной стадии эволюции жизни.], получившему название ЛУКАС[49 - LUCA(S) – Last Ancestral Universal Common State – последнее универсальное предковое состояние- обозначение для разнородной популяции генетических элементов, которые существовавали в сети неорганических ячеек – компартментов. Эта гипотеза о морфологии последнего общего предка предложена выдающимся советским и американским биологом Евгением Куниным в книге «Логика случая. О природе и происхождении биологической эволюции» [9].]. Этот представитель мира РНК – мира доклеточных живых существ передал эстафету жизни первому клеточному организму – последнему универсальному общему предку всего живого на Земле, названному ЛУКА[50 - ЛУКА – LUCA (от англ. Last Universal Common Ancestor) – последний универсальный общий предок. Теорию общего предка предложил Чарльз Дарвин в книге «Происхождение видов» 1859 года.].

Наиболее вероятно, что ЛУКАС был не отдельной клеткой, а совокупностью организмов, которые сформировались в сети соседних микропор гидротермальной постройки – в минеральном инкубаторе жизни. ЛУКАС сформировался в этих минеральных компартментах на базе своих предков – доклеточных каталитических молекул РНК. ЛУКАС был ещё тесно связан с неживой природой. У ЛУКАСа большая часть биологической информации продолжала храниться в молекуле РНК, как и у представителей РНК-мира. ЛУКАС состоял из молекул РНК, которые продолжали существовать автономно, катализируя синтез новых рибонуклеотидов и самовоспроизводясь. В течение нескольких миллионов лет РНК передавали свои каталитические свойства из поколения в поколение. Постепенно потомки ЛУКАС накопили такие случайные мутации, которые привели к появлению РНК, катализировавших синтез белков с более эффективными каталитическими свойствами. В процессе естественного отбора эти полезные мутации белков закрепились.

Многие катаклизмы окружающей среды рассматриваемого периода истории Земли делали способ хранения генетической информации в РНК не надежным. Информация часто искажалась и легко терялась. Естественный отбор предпочел тех потомков ЛУКАСа, которые пошли по пути создания ДНК – более надежного носителя информации, имеющего двойную нить. В результате появился первый клеточный организм – ЛУКА, содержащий кроме РНК также элементы ДНК генома, протеины и древнюю (примитивную) мембрану. Эта мембрана хотя и отличалась примитивностью, однако позволяла ЛУКЕ стать клеткой, независимой от минерального инкубатора жизни, свободно перемещающейся в океане. Несмотря на то, что ЛУКА стал последним универсальным общим предком всех клеточных организмов, тем не менее, он, по сути, был не истинным, а переходным прокариотом. Потому, что имел принципиальные отличия от своих потомков – настоящих прокариотов – архей и бактерий, т. е. ЛУКА не имел типичного большого ДНК-генома и не был типичной клеткой, окруженной прокариотной мембраной.

ЛУКА стал общим предком для всего живого на Земле, т. е. для умерших и ныне существующих живых существ. Но большинство ближайших потомков ЛУКА оказались не успешными природными экспериментами. Только двое потомков стали предками-основателями стабильных, успешных эволюционных линий клеточных организмов – двух главных ветвей жизни (архей и бактерий), у которых появились свои специфические ДНК-геномы и мембраны.

Приблизительный механизм зарождения жизни в зонах гидротермальных источников, который мог бы реализоваться путем абиогенеза, схематично сформулируем в восьми нижеследующих пунктах.

В тонких стенках колоннообразных, преимущественно карбонатных термальных построек сформировались резервуары с порово-трещинными коллекторами (мельчайшими насыщенными флюидом ёмкостями в горной породе). Многие полости пор настолько малы, что имеют размеры биологических клеток. Стенки микропор являлись каталитическими поверхностями для реакций примитивной биохимии. Как правило, тончайшие, полупроницаемые стенки-перемычки, ограничивающие микропоры, могли служить подобием клеточных мембран, отделяющих содержимое единичной микропоры («протоклетки») от других частей резервуара и регулирующих циркуляцию флюидов между отдельной микропорой («протоклеткой») и основными фильтрационными путями резервуара (внешней средой). Кроме того, несколько соседних микропор можно представить пространством для одной органической «протоклетки», в котором каждая микропора ограниченна внутриклеточными стенками-мембранами. В этом случае каждая микропора играет роль замкнутого отсека внутри «протоклетки» – компартмента (или органеллы) с определенными условиями среды. Такое разделение «протоклетки» позволяет развивать разные функции у относительно разделенных частей «протоклетки». Так, что сети микрополостей в гидротермальных постройках можно представить в качестве минеральных инкубаторов добиотической, а затем доклеточной биотической эволюции, от смеси органических молекул к миру РНК. В разных отсеках инкубаторов благодаря уникальным химическим и температурным условиям мог реализоваться абиогенный синтез сначала органических микромолекул-мономеров, низкомолекулярных органических соединений, затем разнообразных сегментов РНК.

Гидротермальные воды с широким набором химических элементов и соединений циркулировали по коллекторам под большим давлением, поставляя через полупроницаемые минеральные стенки-мембраны в микрополости-инкубаторы жизни химические элементы, необходимые для продолжения формирования сложных органических соединений из ранее синтезированных органических молекул-мономеров. С помощью минеральных катализаторов уже на довольно ранних этапах предклеточной эволюции Земли произошло образование трех компонентов, необходимых для формирования нуклеотидов: сахаров (или их заменителей), фосфатов и нуклеиновых оснований. Нуклеотиды необходимы для синтеза молекулы или комплекса молекул, подобных РНК – прото-РНК.

Постоянная фильтрация флюидов через коллекторы гидротермальных построек обеспечивала градиент протонов между потоком теплых щелочных растворов с низким содержанием протонов на внутренней стороне резервуара и прохладной кислой океанической водой, богатой протонами, на внешней стороне трубообразного резервуара. Этим самым в сети неорганических ячеек создавалось подобие условий в живых клетках, которые нуждаются в протонном градиенте на своих мембранах, чтобы хранить энергию. Кроме того, благодаря восходящему движению теплых гидротермальных растворов внутри резервуаров поставлялись в мелкие пустоты коллекторов новые порции химических веществ и удалялись из них продукты реакций. Эта химическая циркуляция в неорганических инкубаторах напоминала зачатки обмена веществ (метаболизма) в живых организмах. В результате реализовался синтез нуклеотидов из присутствующих в микрополостях-инкубаторах жизни компонентов (сахаров или их заменителей, фосфатов и нуклеиновых оснований).

Наличие нуклеотидов в минеральных инкубаторах жизни, а также энергии градиента протонов и глубинного источника широкого набора химических элементов позволило осуществить следующий этап эволюции – при периодическом повышении температуры синтезировать из нуклеотидов сложные органические молекулы (коммунальное сообщество) – предшественники каталитического РНК, которые условно назовем «прото-РНК». Полагаем, что в огромном количестве инкубаторов жизни появилось значительное число прото-РНК, которые, по-видимому, отличались между собой в каких-то компонентах. Какие-то из этих природных генетических полимеров, используя циркуляцию термальных растворов, изобрели процессы примитивного метаболизма. Метаболизм обеспечивал снабжение наиболее успешных представителей прото-РНК необходимыми ресурсами из окружающей среды. Прото-РНК использовали эти ресурсы недр для своего дальнейшего усложнения (развития), т. е. для устойчивого роста.

Постепенное усложнение прото-РНК на протяжении миллионов (!) лет привело к синтезу рибозимов (каталитических РНК), которые имели много общего с известными ныне молекулами РНК. Эти рибозимы были способны катализировать в минеральных микропустотах-инкубаторах химические реакции по самовоспроизводству и эволюционированию большого количества цепей РНК для формирования «мира РНК[51 - Мир РНК – гипотетический этап возникновения жизни на Земле после того, как молекулы РНК выполняли функции хранения генетической информации и катализа химических реакций по самовоспроизводству. Впоследствии комплекс РНК изобрел мембрану для обособления от внешней среды и эволюционировал в современную ДНК-РНК-белковую жизнь. Идея мира РНК возникла у Карла Вёзе в 1968 году, была развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году. В XXI веке гипотеза находит всё больше подтверждений.]». В те времена РНК-молекулы являлись, фактически, целыми организмами, в которых каталитическая РНК исполняла функции ДНК и ферментов, обеспечивала жизнь всего организма. Так, что каталитическая РНК стала первым репликатором[52 - Репликатор – (от лат. replicatio – «возобновление») – предполагаемая предклеточная химическая система, способная к репликации, т. е. к размножению, раздвоению с определенными наследственными изменениями.], обладавшим свойством наследования информации о строении и функциях. Надежное самовоспроизведение (репликация) могло происходить не только путем химического катализа, но также благодаря разделению молекулы (набора молекул) каталитической РНК на части в процессе выдавливания из поры (трещины) определенной доли увеличивающейся молекулярной массы или каким-то иным способом. Молекулы-репликаторы после своего появления включались в дарвиновский эволюционный механизм[53 - Дарвиновская эволюция предполагает происхождение и развитие видов живых организмов в соответствие со следующими основными принципами: перепроизводство (выживание в неблагоприятной среде и размножение сильной части потомства, что сохраняет популяцию), приспособление (способность адаптироваться к неблагоприятной среде и выживать в ней), борьба за выживание (взаимодействие между организмами, направленное на сохраниние жизни конкретной особи – движущий фактор эволюции), видообразование (появление нового типа живого существа в результате наколения полезных мутаций и избавления от плохих генов в пределах одного вида), естественный отбор (результат борьбы за существование, способность воспроизводить более сильное потомство и вымирание неприспособленных особей вида).] – мощный естественный процесс, обеспечивающий последовательное создание всё более сложных и совершенных форм живой природы. Реализация этого эволюционного механизма происходит благодаря таким свойствам репликаторов, как: наследственность, изменчивость и отбор тех вариантов организмов, которые лучше других приспособлены к размножению в существующих условиях. Каталитическая РНК, несущая наследственную информацию о своих предшественниках – стала первым предклеточным (допрокариотным) живым организмом, которого условно называем – ЛУКАС. С появлением ЛУКАСа – генетической, полимерной, каталитической биомолекулы РНК около 4,1 миллиардов л.н. совершился поворот эволюции природы на Предклеточной (Допрокариотной) развилке. С этой развилки начался новый этап антропного маршрута эволюции природы на пути к человечеству: около 100 миллионов лет живая природа в форме мира РНК была представлена постепенно усложняющимися допрокариотными организмами – ближайшими потомками ЛУКАСа.

После Предклеточной развилки появление новых прогенотов стало происходить с всё возрастающей скоростью. Некоторые колебания состава, температуры и давления гидротермальных растворов вызывали те или иные изменения в новых копиях ЛУКАСа, обладавших наследственной информацией. Уникальность ближайших потомков ЛУКАСа обусловливалась кроме того рядом других условий, включая ошибки при копировании. Благодаря этим обстоятельствам каждая копия отличалась от материнского организма той или иной изменчивостью. Наследственная изменчивость обусловливала разнообразие ЛУКАСа, как и последующих живых организмов. Она же является главной причиной эволюционного процесса, поскольку поставляет различные конфигурации живых существ для естественного отбора. Особенно важными для эволюции являются те наследственные различия, которые влияют на эффективность размножения.

Разнообразие копий ЛУКАСа определило их разную способность приспосабливаться к меняющимся условиям нахождения. Индивидуальные прогеноты могли конкурировать за ресурсы и развиваться по-разному. У многих каталитических РНК полученные изменения не обеспечивали в новых условиях необходимую приспособленность к существованию или к размножению (репликации). Такие родственники ЛУКАСа выпали из эволюционного процесса, оказавшись тупиковыми направлениями развития природных систем. Те прогеноты, которым удалось адаптироваться к изменившимся условиям, дали новые копии (потомство). Успешные копии продолжили эволюцию в направлении создания молекулы прото-ДНК, примитивной мембраны и других новых структур.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/chitat-onlayn/?art=70774534&lfrom=174836202&ffile=1) на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Все книги на сайте предоставены для ознакомления и защищены авторским правом