Татьяна Александровна Лобаева "Биология для студентов-медиков: общая биология, молекулярная биология, генетика"

В сборнике приводится краткое теоретическое введение к каждому разделу, даны основные термины и понятия дисциплины, собраны тематические задания различного уровня сложности по 8 темам биологии, включая ситуационные, расчетные, практико-ориентированные, клинические и другие типы задач и упражнений, характерные для использования в образовательном процессе студентов-медиков. Пособие соответствует требованиям ФГОС ВО по направлениям подготовки 31.05.01 Лечебное дело, 33.05.01. Фармация, 31.05.03 Стоматология, 34.03.01 Сестринское дело и может быть использовано при организации и проведении аудиторных занятий по биологии и для аттестации студентов.Рецензенты:Баранова Елена Евгеньевна – кандидат медицинских наук доцент кафедры медицинской генетики РМАНПО,преподаватель кафедры фундаментальных дисциплин Медицинского университета МГИМО-МЕДРыскина Елена Анатольевна – доктор биологических наук, профессор факультета биологии и биотехнологииНИУ «Высшая школа экономики».

date_range Год издания :

foundation Издательство :Автор

person Автор :

workspaces ISBN :

child_care Возрастное ограничение : 12

update Дата обновления : 14.02.2024


(P – давление, V – объём газа, n – количество газа, Т – абсолютная температура,

R – универсальная газовая постоянная, значение которой 8,31 Дж/моль·K = 0,082057 л·атм·К??·моль??)

Эквивалент – реальная или условная часть формульной единицы (атома, молекулы или иона), принимающая участие в образовании одной химической связи при протекании химической реакции.

Под «реальной» частицей понимают реально существующие соединения (NaOH, H

SO

, H

O и др.), под «условной» частицей – доли этих реальных частиц 1/2 H

SO

). Например, в реакции NaOH + HCl = NaCl + H

O эквивалентом гидроксида натрия будет катион Na

потому что при обмене он заменяется на катион водорода. То есть он эквивален H

.

Числo эквивалентности Z показывает, сколько эквивалентов вещества содержится в одной формульной единице. Значение Z зависит от химической реакции, в которой вещество принимает участие.

Наряду с числом эквивалентности часто используют понятие фактора эквивалентности f, представляющего собой долю формульной единицы, соответствующую эквиваленту f =1/Z.

Пример:

H

SO

+ 2NaOH = Na

SO

+ H

O

Z (H

SO

) = 2

Z (NaOH) = 1

В данной реакции одна молекула серной кислоты, отщепляя 2 катиона водорода, расходует две химических связи на образование средней соли Na

SO

, т.е. 1 молекула серной кислоты содержит 2 эквивалента. Число эквивалентности Z = 2, а эквивалентом серной кислоты является ? молекулы, т.е. фактор эквивалентности f = ?.

H

SO

+ NaOH = NaHSO

+ H

O

Z (H

SO

) = 1

Z (NaOH) = 1

При образовании кислой соли NaНSO

в молекуле серной кислоты замещается на натрий только один атом водорода, поэтому в данной реакции эквивалентом серной кислоты является вся молекула.

Примечание:

А) В химических реакциях обменного типа число эквивалентности считают равным количеству моль Н+ или ОН? ионов, которые отщепляются или присоединяются 1 молем вещества.

В) В окислительно-восстановительных реакциях (ОВР) число эквивалентности рассчитывается по отношению к количеству отданных или принятых частицей электронов. Количество эквивалентов вещества ?Э прямо пропорционально произведению количества моль вещества и числа эквивалентности: ?Э = Z · ?

Молярная масса эквивалента (эквивалентная масса) МЭ равна массе одного моль эквивалента вещества. [MЭ]= 1 г/моль

Молярная масса эквивалента МЭ (размерность г/моль)– равна массе вещества, эквивалентной 1 молю водорода или 1 молю электронов в химической реакции. Численно равна эквиваленту вещества. МЭ равна молярной массе вещества, умноженной на фактор эквивалентности:

М(1/z X) = M(X) • f

(X) = M(X) / z

Основные законы химии:

1. Закон сохранения массы (Михаил Васильевич Ломоносов, 1756 и Антуан Лоран Лавуазье, 1778)

Масса исходных веществ, вступивших в реакцию, равна массе получившихся веществ.

2. Закон эквивалентов (И. В. Рихтер, 1792 и У. Х. Волластон, 1807)

Отношение масс веществ, вступающих в химическое взаимодействие, равно отношению их химических эквивалентов

3. Закон постоянства состава (Жозеф Луи Пруст, 1799г.).

Состав индивидуального химического соединения постоянен и не зависит от способа получения этого соединения.

4. Закон простых кратных отношений. (Джон Дальтон, 1803г.). Если два элемента образуют между собой несколько соединений, то на одну и ту же массу одного элемента приходятся такие массы другого, которые относятся друг к другу, как небольшие целые числа.

5. Закон простых объёмных отношений (Жозеф Луи Гей Люссак, 1808).

Объёмы реагирующих газов относятся друг к другу и к объёмам газообразных продуктов как небольшие целые числа.

6. Закон Авогадро (Амедео Авогадро, 1810г.; Канниццаро, 1860г.).

В равных объёмах газов при одинаковых условиях содержится одинаковое число молекул.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

ЗАДАНИЕ 1

Как проанализировать образец воды и убедиться, что она чистая или содержит примеси?

Решение:

_____________________________________

_____________________________________

ЗАДАНИЕ 2. Приведите по 2 примера веществ, являющихся при 20 градусах Цельсия: а) газами б) жидкостями в) твердыми

Решение:

_____________________________________

_____________________________________

ЗАДАНИЕ 3. Приведите примеры смесей: а) двух газов, б) 2 жидкостей в) твердого и жидкого вещества г) газа и жидкости

Решение:

_____________________________________

_____________________________________

ЗАДАНИЕ 4. Как очистить кукурузную крупу от соли и соевое масло от воды?

Решение:

_____________________________________

_____________________________________

ЗАДАНИЕ 5. В чем сходство и различие очистки веществ фильтрованием и отстаиванием?

Решение:

Все книги на сайте предоставены для ознакомления и защищены авторским правом